9 research outputs found

    Three-dimensional printing in congenital heart disease: Considerations on training and clinical implementation from a teaching session

    Get PDF
    In light of growing interest for three-dimensional printing technology in the cardiovascular community, this study focused on exploring the possibilities of providing training for cardiovascular three-dimensional printing in the context of a relevant international congress and providing considerations on the delivery of such courses. As a second objective, the study sought to capture preferences in relation to three-dimensional printing uses and set-ups from those attending the training session. A survey was administered to n = 30 professionals involved or interested in three-dimensional printing cardiovascular models following a specialised teaching session. Survey results suggest the potential for split training sessions, with a broader introduction for those with no prior experience in three-dimensional printing followed by a more in-depth and hands-on session. All participants agreed on the potential of the technology in all its applications, particularly for aiding decision-making around complex surgical or interventional cases. When exploring setting up an in-house three-dimensional printing service, the majority of participants reported that their centre was already equipped with an in-house facility or expressed a desire that such a facility should be available, with a minority preferring consigning models to an external third party for printing

    Modulation of Gr1low monocyte subset impacts insulin sensitivity and weight gain upon high-fat diet in female mice

    No full text
    International audienceBackground/Objectives: Blood monocytes are expanded during obesity. However, the differential contribution of monocyte subsets in obesity-related metabolic disorders remains unknown. The aim of the study was to define the role of the Gr1low monocyte subset upon high-fat diet (HFD).Methods: We used transgenic female mouse models allowing the modulation of circulating Gr1low monocyte number (decreased number in CX3CR1−/− mice and increased number in CD11c-hBcl2 mice) and studied obesity upon HFD.Results: We reported here that HFD induced monocytosis in mice, preferentially due to Gr1low monocyte expansion, and was associated with a specific upregulation of CD11c on that subset. Using mice models with altered Gr1low monocyte number, we found a striking correlation between Gr1low monocytes, bodyweight (BW) and insulin resistance (RT) status. Indeed, CX3CR1−/− female mice, with reduced Gr1low monocytes upon HFD, showed increased RT and a pro-inflammatory profile of the adipose tissue (AT) despite a lower BW. Conversely, mice expressing the anti-apoptotic gene hBcl2 in CD11c-expressing cells have increased Gr1low monocytes, higher insulin sensitivity upon HFD and an anti-inflammatory profile of the AT. Finally, increasing Gr1low monocytes in Gr1low-defective CX3CR1−/− mice rescued BW loss in these mice.Conclusions: By using transgenic female mice and adoptive transfer experiments, we established the evidence for a correlation between Gr1low monocyte subset and weight gain and RT. Hence, this specific Gr1low monocyte subset could be used as a target for acting on AT inflammation and RT

    Tendon Tissue Engineering and Its Role on Healing of the Experimentally Induced Large Tendon Defect Model in Rabbits: A Comprehensive In Vivo Study

    Get PDF
    Healing of large tendon defects is challenging. We studied the role of collagen implant with or without polydioxanone (PDS) sheath on the healing of a large Achilles tendon defect model, in rabbits. Sixty rabbits were divided into three groups. A 2 cm gap was created in the left Achilles tendon of all rabbits. In the control lesions, no implant was used. The other two groups were reconstructed by collagen and collagen-PDS implants respectively. The animals were clinically examined at weekly intervals and their lesions were observed by ultrasonography. Blood samples were obtained from the animals and were assessed for hematological analysis and determination of serum PDGF level, at 60 days post injury (DPI). The animals were then euthanized and their lesions were assessed for gross and histopathology, scanning electron microscopy, biomechanical testing, dry matter and hydroxyproline content. Another 65 pilot animals were also studied grossly and histopathologically to define the host implant interaction and graft incorporation at serial time points. The treated animals gained significantly better clinical scoring compared to the controls. Treatment with collagen and collagen-PDS implants significantly increased the biomechanical properties of the lesions compared to the control tendons at 60DPI (P<0.05). The tissue engineered implants also reduced peritendinous adhesion, muscle fibrosis and atrophy, and increased ultrasonographical echogenicity and homogenicity, maturation and differentiation of the collagen fibrils and fibers, tissue alignment and volume of the regenerated tissue compared to those of the control lesions (P<0.05). The implants were gradually absorbed and substituted by the new tendon. Implantation of the bioimplants had a significant role in initiating tendon healing and the implants were biocompatible, biodegradable and safe for application in tendon reconstructive surgery. The results of the present study may be valuable in clinical practice

    Future of Orthopaedic Sports Medicine and Soft Tissue Healing: The Important Role of Engineering

    No full text

    Phosphoinositide Phosphatases: Just as Important as the Kinases

    No full text
    corecore