12,163 research outputs found
Nanograin VO<inf>2</inf> in the metal phase: A plasmonic system with falling dc resistivity as temperature rises
Thin films of vanadium dioxide with grain sizes smaller than 60nm have a metallic phase with excellent plasmonic response, but their dc resistivity falls as temperature rises to values well above the metal-insulator transition. At the transition optical switching is complete, but the switch in dc resistance is incomplete. In the metallic phase, nanograin and large grain samples have similar values of both plasma frequency and relaxation rate. However, plasmonic response in nanograins is stronger due to the absence of a low energy interband transition found in large grain films. Conductivity rises with thermal activation energy of 108meV, which is well below that in the semiconductor phase. Possible mechanisms for 'non-metal-like' dc behaviour in this plasmonic system are briefly discussed. They include fluctuations, which are coherent in nanograins but incoherent for larger grains. Nanoscale systems seem preferable for optical switching applications and large grain structures for dc switching work. © IOP Publishing Ltd
The apparent optical indices of spongy nanoporous gold
Very thin spongy nanoporous gold films have a unique nanostructure and hence unusual properties. Our interest in these materials is also due to their wide range of potential application (1,2). An optical study for such nanostructured films is of fundamental interest for understanding how light interacts with such a spongy nanoporous structure. In general the gold either percolates or is very closely packed. This surface plasmons, and surface plasmon resonant effects, are expected to play a key role given the large surface area of metal and the metal backbone of the nanostructure. The ropological complexity of the nano-void network is also expected to be a major influence. The optical response has, for a metal system, quite unusual dispersion relations for the effective complex refractive index components n*, k*. Once these are better understood new optical engineering possibilities arise. We are not aware of any optical studies for spongy metal film nanostructures apart from a brief preliminary report of our own on one such film 93) whose nanstructure was different to the spongy nanoporous films presented here. We check the internal consistency and physical accpetability of the results with a Kramers-Kronig analysis of the spectrumn of n*, k* values, because of their unusual spectral character
Bioinformatics advances in saliva diagnostics
There is a need recognized by the National Institute of Dental & Craniofacial Research and the National Cancer Institute to advance
basic, translational and clinical saliva research. The goal of the Salivaomics Knowledge Base (SKB) is to create a data management system and web resource constructed to support human salivaomics research. To maximize the utility of the SKB for retrieval,
integration and analysis of data, we have developed the Saliva Ontology and SDxMart. This article reviews the informatics advances in saliva diagnostics made possible by the Saliva Ontology and SDxMart
The Blood Ontology: An ontology in the domain of hematology
Despite the importance of human blood to clinical practice and research, hematology and blood transfusion data remain scattered throughout a range of disparate sources. This lack of systematization concerning the use and definition of terms poses problems for physicians and biomedical professionals. We are introducing here the Blood Ontology, an ongoing initiative designed to serve as a controlled vocabulary for use in organizing information about blood. The paper describes the scope of the Blood Ontology, its stage of development and some of its anticipated uses
Bulk and surface plasmons in highly nanoporous gold films
The far field plasmonic behaviour of nanoporous gold films with void densities ranging from 60% to 90% has been investigated and modelled. These layers have good dc conductivity and quite different nanostructure to traditional porous layers in which the metal percolates. Our gold films with void density f above 70% have high thermal emittance for a conductor at their thicknesses and their flat spectral response at visible and near infrared wavelengths is not metal like. We derive effective optical constants which become plasmonic at wavelengths between 1.8 and 4 νm for f from 72 to 87%. This onset is much longer than that in bulk gold. For void densities below 70% the onset of plasmonic behaviour is much closer to the dense material. A simple test is implemented to test for surface plasmon polaritons (SPPs) under illumination. The more porous films show no evidence of SPP, while the less porous films display weak evidence. Thus by tailoring void content in these nanostructures we can tailor the onset of effective plasmonic response across a wide range from 0.8 to 4 νm and emittance from around 0.9 down to low values. An effective uniform metal response is thus found in the presence of surface nanostructure without the interface absorption found in dense gold layers with structured surfaces. © 2007 IOP Publishing Ltd
Penguin decays of B mesons
Penguin, or loop, decays of B mesons induce effective flavor-changing neutral
currents, which are forbidden at tree level in the Standard Model. These decays
give special insight into the CKM matrix and are sensitive to non-standard
model effects. In this review, we give a historical and theoretical
introduction to penguins and a description of the various types of penguin
processes: electromagnetic, electroweak, and gluonic. We review the
experimental searches for penguin decays, including the measurements of the
electromagnetic penguins b -> s gamma and B -> K* gamma and gluonic penguins B
-> K pi, B+ -> omega K+ and B -> eta' K, and their implications for the
Standard Model and New Physics. We conclude by exploring the future prospects
for penguin physics.Comment: 49 pages, LATEX, 30 embedded figures, submitted to Annual Reviews of
Nuclear and Particle Scienc
Probing the momentum relaxation time of charge carriers in ultrathin semiconductor layers
We report on a terahertz time-domain technique for measuring the momentum
relaxation time of charge carriers in ultrathin semiconductor layers. The phase
sensitive modulation technique directly provides the relaxation time.
Time-resolved THz experiments were performed on n-doped GaAs and show precise
agreement with data obtained by electrical characterization. The technique is
well suited for studying novel materials where parameters such as the charge
carriers' effective mass or the carrier density are not known a priori
Optical response of nanostructured metal/dielectric composites and multilayers
The homogeneous optical response in conducting nanostructured layers, and in insulating layers containing dense arrays of self assembled conducting nanoparticles separated by organic linkers, is examined experimentally through their effective complex indices (n*, k*). Classical effective medium models, modified to account for the 3-phase nanostructure, are shown to explain (n*, k*) in dense particulate systems but not inhomogeneous layers with macroscopic conductance for which a different approach to homogenisation is discussed, (n*, k*) data on thin granular metal films, thin mesoporous gold, and on thin metal layers containing ordered arrays of voids, is linked to properties of the surface plasmon states which span the nanostructured film. Coupling between evanescent waves at either surface counterbalanced by electron scattering losses must be considered. Virtual bound states for resonant photons result, with the associated transit delay leading to a large rise in n* in many nanostructures. Overcoating n-Ag with alumina is shown to alter (n*, k*) through its impact on the SP coupling. In contrast to classical optical homogenisation, effective indices depend on film thickness. Supporting high resolution SEM images are presented
- …
