1,078 research outputs found
Recommended from our members
Mechanical shock during egg de-adhesion and post-ovulatory ageing contribute to spontaneous autopolyploidy in white sturgeon culture (Acipenser transmontanus)
Spontaneous autopolyploidy, a 1.5x increase in genome size resulting from second polar body retention after fertilization, has been documented in cultured sturgeons, with the proportion of spontaneous autopolyploid progeny ranging widely among maternal families. Sturgeon farms wish to reduce the number of spontaneous autopolyploids because their progeny, when crossed with a normal ploidy parent, exhibit intermediate ploidies, resulting in reproductive abnormalities. However, there is limited knowledge of the causes of the second polar body retention in sturgeon culture. In this study, we report the results of experiments performed from 2015 to 2019 aimed at identifying the sources of spontaneous autopolyploidy in white sturgeon (Acipenser transmontanus) culture. In collaboration with several sturgeon farms, we tested whether post-ovulatory ageing, mechanical shock during egg de-adhesion, and the combined effects of both factors increased spontaneous autopolyploidy. To test the effect of post-ovulatory ageing, eggs were collected from females and either fertilized at the industry normative time (2–5 h post-oviposition) or stored in ovarian fluid at 15 °C for 6–8 h before fertilization. To test the effect of mechanical shock, eggs were collected, fertilized 2–5 h post-oviposition and exposed to either gentle or vigorous mixing during the 60 min de-adhesion treatment. Results from this work reveal that post-ovulatory ageing does increase the incidence of spontaneous autopolyploidy in some females, but overall the proportions produced were low (range 0–15%). Proportions of spontaneous autopolyploids in eggs exposed to vigorous mixing were also variable (1–92%) but significantly higher in 75% of the females when compared to their respective controls or gentle mixing treatments, indicating that mechanical shock during egg de-adhesion is likely the primary cause of spontaneous autopolyploidy. To our knowledge this is the first study to document mechanical shock to eggs during de-adhesion as a cause of abnormal ploidy in cultured fishes. We observed high variability in egg quality among females and a significant relationship between embryo mortality and the incidence of spontaneous autopolyploidy when eggs were exposed to mechanical shock. Repeated spawning of a female that produced a high proportion of spontaneous autopolyploids provided preliminary evidence that genetic background may influence the likelihood that a female's eggs will be prone to second polar body retention when subjected to mechanical shock. Although spontaneous autopolyploidy in sturgeon culture will likely never be eliminated entirely, we provide practical recommendations to sturgeon producers to reduce its incidence in a production setting
Proliferation and estrogen signaling can distinguish patients at risk for early versus late relapse among estrogen receptor positive breast cancers
Introduction: We examined if a combination of proliferation markers and estrogen receptor (ER) activity could predict early versus late relapses in ER-positive breast cancer and inform the choice and length of adjuvant endocrine therapy.
Methods: Baseline affymetrix gene-expression profiles from ER-positive patients who received no systemic therapy (n = 559), adjuvant tamoxifen for 5 years (cohort-1: n = 683, cohort-2: n = 282) and from 58 patients treated with neoadjuvant letrozole for 3 months (gene-expression available at baseline, 14 and 90 days) were analyzed. A proliferation score based on the expression of mitotic kinases (MKS) and an ER-related score (ERS) adopted from Oncotype DX® were calculated. The same analysis was performed using the Genomic Grade Index as proliferation marker and the luminal gene score from the PAM50 classifier as measure of estrogen-related genes. Median values were used to define low and high marker groups and four combinations were created. Relapses were grouped into time cohorts of 0-2.5, 0-5, 5-10 years.
Results: In the overall 10 years period, the proportional hazards assumption was violated for several biomarker groups indicating time-dependent effects. In tamoxifen-treated patients Low-MKS/Low-ERS cancers had continuously increasing risk of relapse that was higher after 5 years than Low-MKS/High-ERS cancers [0 to 10 year, HR 3.36; p = 0.013]. High-MKS/High-ERS cancers had low risk of early relapse [0-2.5 years HR 0.13; p = 0.0006], but high risk of late relapse which was higher than in the High-MKS/Low-ERS group [after 5 years HR 3.86; p = 0.007]. The High-MKS/Low-ERS subset had most of the early relapses [0 to 2.5 years, HR 6.53; p < 0.0001] especially in node negative tumors and showed minimal response to neoadjuvant letrozole. These findings were qualitatively confirmed in a smaller independent cohort of tamoxifen-treated patients. Using different biomarkers provided similar results.
Conclusions: Early relapses are highest in highly proliferative/low-ERS cancers, in particular in node negative tumors. Relapses occurring after 5 years of adjuvant tamoxifen are highest among the highly-proliferative/high-ERS tumors although their risk of recurrence is modest in the first 5 years on tamoxifen. These tumors could be the best candidates for extended endocrine therapy
Recommended from our members
Towards an empirical test of realism in cognition
We review recent progress in designing an empirical test of (temporal) realism in cognition. Realism in this context is the property that cognitive variables always have well defined (if possibly unknown) values at all times. We focus most of our attention in this contribution on discussing the exact notion of realism that is to be tested, as we feel this issue has not received enough attention to date. We also give a brief outline of the empirical test, including some comments on an experimental realisation, and we discuss what we should conclude from any purported experimental ‘disproof’ of realism. This contribution is based on Yearsley and Pothos (2014)
A generic travelling wave solution in dissipative laser cavity
A large family of cosh-Gaussian travelling wave solution of a complex Ginzburg–Landau equation (CGLE), that describes dissipative semiconductor laser cavity is derived. Using perturbation method, the stability region is identified. Bifurcation analysis is done by smoothly varying the cavity loss coefficient to provide insight of the system dynamics. He’s variational method is adopted to obtain the standard sech-type and the notso-explored but promising cosh-Gaussian type, travelling wave solutions. For a given set of system parameters, only one sech solution is obtained, whereas several distinct solution points are derived for cosh-Gaussian case. These solutions yield a wide variety of travelling wave profiles, namely Gaussian, near-sech, flat-top and a cosh-Gaussianwith variable central dip. A split-step Fourier method and pseudospectral method have been used for direct numerical solution of the CGLE and travelling wave profiles identical to the analytical profiles have been obtained. We also identified the parametric zone that promises an extremely large family of cosh-Gaussian travelling wave solutions with tunable shape. This suggests that the cosh-Gaussian profile is quite generic and would be helpful for further theoretical as well as experimental investigation on pattern formation, pulse dynamics andlocalization in semiconductor laser cavity
Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2
Increasing atmospheric CO2 concentrations are expected to impact pelagic ecosystem functioning in the near future by
driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and
seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for
possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO2
gradient ranging from ,0.5–250 mmol kg21 (i.e. ,20–6000 matm pCO2) at three different temperatures (i.e. 10, 15, 20uC for
E. huxleyi and 15, 20, 25uC for G. oceanica). Both species showed CO2-dependent optimum-curve responses for growth,
photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and
production rates and modified sensitivities of metabolic processes to increasing CO2. CO2 optimum concentrations for
growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate
temperatures. However, there was a clear optimum shift towards higher CO2 concentrations from intermediate to high
temperatures in both species. Our results demonstrate that the CO2 concentration where optimum growth, calcification and
carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean
acidification at a given temperature can be negative, neutral or positive depending on that strain’s temperature optimum.
This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when
interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of
changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the
future ocean
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Carbon sequestration in the deep Atlantic enhanced by Saharan dust
Enhanced atmospheric input of dust-borne nutrients and minerals to the remote surface ocean can potentially increase carbon uptake and sequestration at depth. Nutrients can enhance primary productivity, and mineral particles act as ballast, increasing sinking rates of particulate organic matter. Here we present a two-year time series of sediment trap observations of particulate organic carbon flux to 3,000 m depth, measured directly in two locations: the dust-rich central North Atlantic gyre and the dust-poor South Atlantic gyre. We find that carbon fluxes are twice as high and a higher proportion of primary production is exported to depth in the dust-rich North Atlantic gyre. Low stable nitrogen isotope ratios suggest that high fluxes result from the stimulation of nitrogen fixation and productivity following the deposition of dust-borne nutrients. Sediment traps in the northern gyre also collected intact colonies of nitrogen-fixing Trichodesmium species. Whereas ballast in the southern gyre is predominantly biogenic, dust-derived mineral particles constitute the dominant ballast element during the enhanced carbon fluxes in the northern gyre. We conclude that dust deposition increases carbon sequestration in the North Atlantic gyre through the fertilization of the nitrogen-fixing community in surface waters and mineral ballasting of sinking particles
Integrated high-content quantification of intracellular ROS levels and mitochondrial morphofunction
Oxidative stress arises from an imbalance between the production of reactive oxygen species (ROS) and their removal by cellular antioxidant systems. Especially under pathological conditions, mitochondria constitute a relevant source of cellular ROS. These organelles harbor the electron transport chain, bringing electrons in close vicinity to molecular oxygen. Although a full understanding is still lacking, intracellular ROS generation and mitochondrial function are also linked to changes in mitochondrial morphology. To study the intricate relationships between the different factors that govern cellular redox balance in living cells, we have developed a high-contentmicroscopy-based strategy for simultaneous quantification of intracellular ROS levels and mitochondrial morphofunction. Here, we summarize the principles of intracellular ROS generation and removal, and we explain the major considerations for performing quantitative microscopy analyses of ROS and mitochondrial morphofunction in living cells. Next, we describe our workflow, and finally, we illustrate that a multiparametric readout enables the unambiguous classification of chemically perturbed cells as well as laminopathy patient cells
Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens
This is the final version of the article. Available from the publisher via the DOI in this record.Background: Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses.
Results:
We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses.
Conclusions:
Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.This article is a joint effort of the working group TRANSBEE and an
outcome of two workshops kindly supported by sDiv, the Synthesis
Centre for Biodiversity Sciences within the German Centre for Integrative
Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Science
Foundation (FZT 118). New datasets were performed thanks to the Insect
Pollinators Initiative (IPI grant BB/I000100/1 and BB/I000151/1), with participation
of the UK-USA exchange funded by the BBSRC BB/I025220/1 (datasets #4,
11 and 14). The IPI is funded jointly by the Biotechnology and Biological
Sciences Research Council, the Department for Environment, Food and Rural
Affairs, the Natural Environment Research Council, the Scottish Government
and the Wellcome Trust, under the Living with Environmental Change
Partnershi
- …
