576 research outputs found
Double-Lepton Polarization Asymmetries and Branching Ratio of the B\rar \gamma l^+ l^- transition in Universal Extra Dimension
We study the radiative dileptonic B \rar \gamma l^+ l^- transition in the
presence of a universal extra dimension in the Applequist-Cheng-Dobrescu model.
In particular, using the corresponding form factors calculated via light cone
QCD sum rules, we analyze the branching ratio and double lepton polarization
asymmetries related to this channel and compare the results with the
predictions of the standard model. We show how the results deviate from
predictions of the standard model at lower values of the compactification
factor () of extra dimension.Comment: 20 Pages and 8 Figure
Wet Granular Materials
Most studies on granular physics have focused on dry granular media, with no
liquids between the grains. However, in geology and many real world
applications (e.g., food processing, pharmaceuticals, ceramics, civil
engineering, constructions, and many industrial applications), liquid is
present between the grains. This produces inter-grain cohesion and drastically
modifies the mechanical properties of the granular media (e.g., the surface
angle can be larger than 90 degrees). Here we present a review of the
mechanical properties of wet granular media, with particular emphasis on the
effect of cohesion. We also list several open problems that might motivate
future studies in this exciting but mostly unexplored field.Comment: review article, accepted for publication in Advances in Physics;
tex-style change
Inadequacy of zero-width approximation for a light Higgs boson signal
In the Higgs search at the LHC, a light Higgs boson (115 GeV <~ M_H <~ 130
GeV) is not excluded by experimental data. In this mass range, the width of the
Standard Model Higgs boson is more than four orders of magnitude smaller than
its mass. The zero-width approximation is hence expected to be an excellent
approximation. We show that this is not always the case. The inclusion of
off-shell contributions is essential to obtain an accurate Higgs signal
normalisation at the 1% precision level. For gg (-> H) -> VV, V= W,Z, O(10%)
corrections occur due to an enhanced Higgs signal in the region M_VV > 2 M_V,
where also sizable Higgs-continuum interference occurs. We discuss how
experimental selection cuts can be used to exclude this region in search
channels where the Higgs invariant mass cannot be reconstructed. We note that
the H -> VV decay modes in weak boson fusion are similarly affected.Comment: 26 pages, 18 figures, 6 tables; added references, expanded
introduction, version to appear in JHE
Self-avoiding walks and connective constants
The connective constant of a quasi-transitive graph is the
asymptotic growth rate of the number of self-avoiding walks (SAWs) on from
a given starting vertex. We survey several aspects of the relationship between
the connective constant and the underlying graph .
We present upper and lower bounds for in terms of the
vertex-degree and girth of a transitive graph.
We discuss the question of whether for transitive
cubic graphs (where denotes the golden mean), and we introduce the
Fisher transformation for SAWs (that is, the replacement of vertices by
triangles).
We present strict inequalities for the connective constants
of transitive graphs , as varies.
As a consequence of the last, the connective constant of a Cayley
graph of a finitely generated group decreases strictly when a new relator is
added, and increases strictly when a non-trivial group element is declared to
be a further generator.
We describe so-called graph height functions within an account of
"bridges" for quasi-transitive graphs, and indicate that the bridge constant
equals the connective constant when the graph has a unimodular graph height
function.
A partial answer is given to the question of the locality of
connective constants, based around the existence of unimodular graph height
functions.
Examples are presented of Cayley graphs of finitely presented
groups that possess graph height functions (that are, in addition, harmonic and
unimodular), and that do not.
The review closes with a brief account of the "speed" of SAW.Comment: Accepted version. arXiv admin note: substantial text overlap with
arXiv:1304.721
Recommended from our members
Convergence in international business ethics? A comparative study of ethical philosophies, thinking style, and ethical decision-making between US and Korean managers
This study investigates the relationship among ethical philosophy, thinking style, and managerial ethical decision-making. Based on the premise that business ethics is a function of culture and time, we attempt to explore two important questions as to whether the national differences in managerial ethical philosophies remain over time and whether the relationship between thinking style and ethical decision-making is consistent across different national contexts. We conducted a survey on Korean managers’ ethical decision-making and thinking style and made a cross-cultural, cross-temporal comparison with the results presented by previous studies that surveyed Korean and US managers with the same questionnaire at different points in time. Our analysis revealed that Korean managers have become more reliant on rule utilitarianism for ethical decision-making over the last two decades, which is dominantly used by US managers, corroborating our convergence hypothesis built on social contracts theory. However, as opposed to previous research, we found that managers with a balanced linear and nonlinear thinking style do not necessarily make more ethical decisions compared to those with a predominantly linear or nonlinear thinking style. This study contributes to international business ethics literature by presenting a theoretical framework that may explain the convergence of ethical philosophies employed by managers in different national contexts over time, and that the relationship between thinking style and managerial ethical decision-making may not be universal, but contingent on contextual factors
Applications of CRISPR–Cas systems in neuroscience
Genome-editing tools, and in particular those based on CRISPR-Cas (clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein) systems, are accelerating the pace of biological research and enabling targeted genetic interrogation in almost any organism and cell type. These tools have opened the door to the development of new model systems for studying the complexity of the nervous system, including animal models and stem cell-derived in vitro models. Precise and efficient gene editing using CRISPR-Cas systems has the potential to advance both basic and translational neuroscience research.National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant 5R01DK097768-03
Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium
The transcytosis of antigens across the gut epithelium by microfold cells (M cells) is important for the induction of efficient immune responses to some mucosal antigens in Peyer’s patches. Recently, substantial progress has been made in our understanding of the factors that influence the development and function of M cells. This review highlights these important advances, with particular emphasis on: the host genes which control the functional maturation of M cells; how this knowledge has led to the rapid advance in our understanding of M-cell biology in the steady-state and during aging; molecules expressed on M cells which appear to be used as “immunosurveillance” receptors to sample pathogenic microorganisms in the gut; how certain pathogens appear to exploit M cells to infect the host; and finally how this knowledge has been used to specifically target antigens to M cells to attempt to improve the efficacy of mucosal vaccines
Enhanced electron acceleration by high-intensity lasers in extended (confined) preplasma in cone targets
The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review.
BACKGROUND: The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. SHORT CONCLUSIONS: This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place
A Full Pharmacological Analysis of the Three Turkey β-Adrenoceptors and Comparison with the Human β-Adrenoceptors
There are three turkey β-adrenoceptors: the original turkey β-adrenoceptor from erythrocytes (tβtrunc, for which the X-ray crystal structure has recently been determined), tβ3C and tβ4C-receptors. This study examined the similarities and differences between these avian receptors and mammalian receptors with regards to binding characteristics and functional high and low affinity agonist conformations.Stable cell lines were constructed with each of the turkey β-adrenoceptors and 3H-CGP12177 whole cell binding, CRE-SPAP production and (3)H-cAMP accumulation assays performed. It was confirmed that the three turkey β-adrenoceptors are distinct from each other in terms of amino acid sequence and binding characteristics. The greatest similarity of any of the turkey β-adrenoceptors to human β-adrenoceptors is between the turkey β3C-receptor and the human β2-adrenoceptor. There are pharmacologically distinct differences between the binding of ligands for the tβtrunc and tβ4C and the human β-adrenoceptors (e.g. with CGP20712A and ICI118551). The tβtrunc and tβ4C-adrenoceptors appear to exist in at least two different agonist conformations in a similar manner to that seen at both the human and rat β1-adrenoceptor and human β3-adrenoceptors. The tβ3C-receptor, similar to the human β2-adrenoceptor, does not, at least so far, appear to exist in more than one agonist conformation.There are several similarities, but also several important differences, between the recently crystallised turkey β-adrenoceptor and the human β-adrenoceptors. These findings are important for those the field of drug discovery using the recently structural information from crystallised receptors to aid drug design. Furthermore, comparison of the amino-acid sequence for the turkey and human adrenoceptors may therefore shed more light on the residues involved in the existence of the secondary β-adrenoceptor conformation
- …
