30 research outputs found
Tuning of Human Modulation Filters Is Carrier-Frequency Dependent
Licensed under the Creative Commons Attribution License
Rearrangement of Timbre Space Due To Background Noise: Behavioural Evidence and Acoustic Correlates
Current challenges in software solutions for mass spectrometry-based quantitative proteomics
This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.
Deep Karaoke: Extracting Vocals from Musical Mixtures Using a Convolutional Deep Neural Network.
Deep Remix: Remixing Musical Mixtures Using a Convolutional Deep Neural Network
Audio source separation is a difficult machine learning problem and performance is measured by comparing extracted signals with the component source signals. However, if separation is motivated by the ultimate goal of re-mixing then complete separation is not necessary and hence separation difficulty and separation quality are dependent on the nature of the re-mix. Here, we use a convolutional deep neural network (DNN), trained to estimate 'ideal' binary masks for separating voice from music, to perform re-mixing of the vocal balance by operating directly on the individual magnitude components of the musical mixture spectrogram. Our results demonstrate that small changes in vocal gain may be applied with very little distortion to the ultimate re-mix. Our method may be useful for re-mixing existing mixes
deepkaraoke
Code and dataset index file for reproducing the paper "Deep Karaoke: Extracting Vocals from Musical Mixtures Using a Convolutional Deep Neural Network
Perceptual evaluation of blind source separation in object-based audio production
Object-based audio has the potential to enable multime- dia content to be tailored to individual listeners and their reproduc- tion equipment. In general, object-based production assumes that the objects|the assets comprising the scene|are free of noise and inter- ference. However, there are many applications in which signal separa- tion could be useful to an object-based audio work ow, e.g., extracting individual objects from channel-based recordings or legacy content, or recording a sound scene with a single microphone array. This paper de- scribes the application and evaluation of blind source separation (BSS) for sound recording in a hybrid channel-based and object-based workflow, in which BSS-estimated objects are mixed with the original stereo recording. A subjective experiment was conducted using simultaneously spoken speech recorded with omnidirectional microphones in a rever- berant room. Listeners mixed a BSS-extracted speech object into the scene to make the quieter talker clearer, while retaining acceptable au- dio quality, compared to the raw stereo recording. Objective evaluations show that the relative short-term objective intelligibility and speech qual- ity scores increase using BSS. Further objective evaluations are used to discuss the in uence of the BSS method on the remixing scenario; the scenario shown by human listeners to be useful in object-based audio is shown to be a worse-case scenario
Discriminative Enhancement for Single Channel Audio Source Separation using Deep Neural Networks
The sources separated by most single channel audio source separation techniques are usually distorted and each separated source contains residual signals from the other sources. To tackle this problem, we propose to enhance the separated sources by decreasing the distortion and interference between the separated sources using deep neural networks (DNNs). Two different DNNs are used in this work. The first DNN is used to separate the sources from the mixed signal. The second DNN is used to enhance the ..
Single Channel Audio Source Separation using Deep Neural Network Ensembles
Deep neural networks (DNNs) are often used to tackle the single channel source separation (SCSS) problem by predicting time-frequency masks. The predicted masks are then used to separate the sources from the mixed signal. Different types of masks produce separated sources with different levels of distortion and interference. Some types of masks produce separated sources with low distortion, while other masks produce low interference between the separated sources. In this paper, a combination of different DNNs’ predictions (masks) is used for SCSS to achieve better quality of the separated sources than using each DNN individually. We train four different DNNs by minimizing four different cost functions to predict four different masks. The first and second DNNs are trained to approximate reference binary and soft masks. The third DNN is trained to predict a mask from the reference sources directly. The last DNN is trained similarly to the third DNN but with an additional discriminative constraint to maximize the differences between the estimated sources. Our experimental results show that combining the predictions of different DNNs achieves separated sources with better quality than using each DNN individuall
Combining Mask Estimates for Single Channel Audio Source Separation using Deep Neural Networks
Deep neural networks (DNNs) are usually used for single channel source separation to predict either soft or binary time frequency masks. The masks are used to separate the sources from the mixed signal. Binary masks produce separated sources with more distortion and less interference than soft masks. In this paper, we propose to use another DNN to combine the estimates of binary and soft masks to achieve the advantages and avoid the disadvantages of using each mask individually. We aim to achieve separated sources with low distortion and low interference between each other. Our experimental results show that combining the estimates of binary and soft masks using DNN achieves lower distortion than using each estimate individually and achieves as low interference as the binary mask
