1,321 research outputs found
Lower Bounds for RAMs and Quantifier Elimination
We are considering RAMs , with wordlength , whose arithmetic
instructions are the arithmetic operations multiplication and addition modulo
, the unary function , the binary
functions (with ), ,
, and the boolean vector operations defined on
sequences of length . It also has the other RAM instructions. The size
of the memory is restricted only by the address space, that is, it is
words. The RAMs has a finite instruction set, each instruction is encoded by a
fixed natural number independently of . Therefore a program can run on
each machine , if is sufficiently large. We show that there
exists an and a program , such that it satisfies the following
two conditions.
(i) For all sufficiently large , if running on gets an
input consisting of two words and , then, in constant time, it gives a
output .
(ii) Suppose that is a program such that for each sufficiently large
, if , running on , gets a word of length as an
input, then it decides whether there exists a word of length such that
. Then, for infinitely many positive integers , there exists a
word of length , such that the running time of on at
input is at least
A new proof of the graph removal lemma
Let H be a fixed graph with h vertices. The graph removal lemma states that
every graph on n vertices with o(n^h) copies of H can be made H-free by
removing o(n^2) edges. We give a new proof which avoids Szemer\'edi's
regularity lemma and gives a better bound. This approach also works to give
improved bounds for the directed and multicolored analogues of the graph
removal lemma. This answers questions of Alon and Gowers.Comment: 17 page
On graphs with a large chromatic number containing no small odd cycles
In this paper, we present the lower bounds for the number of vertices in a
graph with a large chromatic number containing no small odd cycles
Sorting and Selection with Imprecise Comparisons
In experimental psychology, the method of paired comparisons was proposed as a means for ranking preferences amongst n elements of a human subject. The method requires performing all (n2) comparisons then sorting elements according to the number of wins. The large number of comparisons is performed to counter the potentially faulty decision-making of the human subject, who acts as an imprecise comparator.
We consider a simple model of the imprecise comparisons: there exists some δ> 0 such that when a subject is given two elements to compare, if the values of those elements (as perceived by the subject) differ by at least δ, then the comparison will be made correctly; when the two elements have values that are within δ, the outcome of the comparison is unpredictable. This δ corresponds to the just noticeable difference unit (JND) or difference threshold in the psychophysics literature, but does not require the statistical assumptions used to define this value.
In this model, the standard method of paired comparisons minimizes the errors introduced by the imprecise comparisons at the cost of (n2) comparisons. We show that the same optimal guarantees can be achieved using 4 n 3/2 comparisons, and we prove the optimality of our method. We then explore the general tradeoff between the guarantees on the error that can be made and number of comparisons for the problems of sorting, max-finding, and selection. Our results provide close-to-optimal solutions for each of these problems.Engineering and Applied Science
Lower bounds for on-line graph colorings
We propose two strategies for Presenter in on-line graph coloring games. The
first one constructs bipartite graphs and forces any on-line coloring algorithm
to use colors, where is the number of vertices in the
constructed graph. This is best possible up to an additive constant. The second
strategy constructs graphs that contain neither nor as a subgraph
and forces colors. The best known
on-line coloring algorithm for these graphs uses colors
Predicting Non-linear Cellular Automata Quickly by Decomposing Them into Linear Ones
We show that a wide variety of non-linear cellular automata (CAs) can be
decomposed into a quasidirect product of linear ones. These CAs can be
predicted by parallel circuits of depth O(log^2 t) using gates with binary
inputs, or O(log t) depth if ``sum mod p'' gates with an unbounded number of
inputs are allowed. Thus these CAs can be predicted by (idealized) parallel
computers much faster than by explicit simulation, even though they are
non-linear.
This class includes any CA whose rule, when written as an algebra, is a
solvable group. We also show that CAs based on nilpotent groups can be
predicted in depth O(log t) or O(1) by circuits with binary or ``sum mod p''
gates respectively.
We use these techniques to give an efficient algorithm for a CA rule which,
like elementary CA rule 18, has diffusing defects that annihilate in pairs.
This can be used to predict the motion of defects in rule 18 in O(log^2 t)
parallel time
Finding the Median (Obliviously) with Bounded Space
We prove that any oblivious algorithm using space to find the median of a
list of integers from requires time . This bound also applies to the problem of determining whether the median
is odd or even. It is nearly optimal since Chan, following Munro and Raman, has
shown that there is a (randomized) selection algorithm using only
registers, each of which can store an input value or -bit counter,
that makes only passes over the input. The bound also implies
a size lower bound for read-once branching programs computing the low order bit
of the median and implies the analog of for length oblivious branching programs
Rigidity and Non-recurrence along Sequences
Two properties of a dynamical system, rigidity and non-recurrence, are
examined in detail. The ultimate aim is to characterize the sequences along
which these properties do or do not occur for different classes of
transformations. The main focus in this article is to characterize explicitly
the structural properties of sequences which can be rigidity sequences or
non-recurrent sequences for some weakly mixing dynamical system. For ergodic
transformations generally and for weakly mixing transformations in particular
there are both parallels and distinctions between the class of rigid sequences
and the class of non-recurrent sequences. A variety of classes of sequences
with various properties are considered showing the complicated and rich
structure of rigid and non-recurrent sequences
Solving the Shortest Vector Problem in Lattices Faster Using Quantum Search
By applying Grover's quantum search algorithm to the lattice algorithms of
Micciancio and Voulgaris, Nguyen and Vidick, Wang et al., and Pujol and
Stehl\'{e}, we obtain improved asymptotic quantum results for solving the
shortest vector problem. With quantum computers we can provably find a shortest
vector in time , improving upon the classical time
complexity of of Pujol and Stehl\'{e} and the of Micciancio and Voulgaris, while heuristically we expect to find a
shortest vector in time , improving upon the classical time
complexity of of Wang et al. These quantum complexities
will be an important guide for the selection of parameters for post-quantum
cryptosystems based on the hardness of the shortest vector problem.Comment: 19 page
- …
