1,321 research outputs found

    Lower Bounds for RAMs and Quantifier Elimination

    Full text link
    We are considering RAMs NnN_{n}, with wordlength n=2dn=2^{d}, whose arithmetic instructions are the arithmetic operations multiplication and addition modulo 2n2^{n}, the unary function min{2x,2n1} \min\lbrace 2^{x}, 2^{n}-1\rbrace, the binary functions x/y\lfloor x/y\rfloor (with x/0=0\lfloor x/0 \rfloor =0), max(x,y)\max(x,y), min(x,y)\min(x,y), and the boolean vector operations ,,¬\wedge,\vee,\neg defined on 0,10,1 sequences of length nn. It also has the other RAM instructions. The size of the memory is restricted only by the address space, that is, it is 2n2^{n} words. The RAMs has a finite instruction set, each instruction is encoded by a fixed natural number independently of nn. Therefore a program PP can run on each machine NnN_{n}, if n=2dn=2^{d} is sufficiently large. We show that there exists an ϵ>0\epsilon>0 and a program PP, such that it satisfies the following two conditions. (i) For all sufficiently large n=2dn=2^{d}, if PP running on NnN_{n} gets an input consisting of two words aa and bb, then, in constant time, it gives a 0,10,1 output Pn(a,b)P_{n}(a,b). (ii) Suppose that QQ is a program such that for each sufficiently large n=2dn=2^{d}, if QQ, running on NnN_{n}, gets a word aa of length nn as an input, then it decides whether there exists a word bb of length nn such that Pn(a,b)=0P_{n}(a,b)=0. Then, for infinitely many positive integers dd, there exists a word aa of length n=2dn=2^{d}, such that the running time of QQ on NnN_{n} at input aa is at least ϵ(logd)12(loglogd)1\epsilon (\log d)^{\frac{1}{2}} (\log \log d)^{-1}

    A new proof of the graph removal lemma

    Get PDF
    Let H be a fixed graph with h vertices. The graph removal lemma states that every graph on n vertices with o(n^h) copies of H can be made H-free by removing o(n^2) edges. We give a new proof which avoids Szemer\'edi's regularity lemma and gives a better bound. This approach also works to give improved bounds for the directed and multicolored analogues of the graph removal lemma. This answers questions of Alon and Gowers.Comment: 17 page

    On graphs with a large chromatic number containing no small odd cycles

    Full text link
    In this paper, we present the lower bounds for the number of vertices in a graph with a large chromatic number containing no small odd cycles

    Sorting and Selection with Imprecise Comparisons

    Get PDF
    In experimental psychology, the method of paired comparisons was proposed as a means for ranking preferences amongst n elements of a human subject. The method requires performing all (n2) comparisons then sorting elements according to the number of wins. The large number of comparisons is performed to counter the potentially faulty decision-making of the human subject, who acts as an imprecise comparator. We consider a simple model of the imprecise comparisons: there exists some δ> 0 such that when a subject is given two elements to compare, if the values of those elements (as perceived by the subject) differ by at least δ, then the comparison will be made correctly; when the two elements have values that are within δ, the outcome of the comparison is unpredictable. This δ corresponds to the just noticeable difference unit (JND) or difference threshold in the psychophysics literature, but does not require the statistical assumptions used to define this value. In this model, the standard method of paired comparisons minimizes the errors introduced by the imprecise comparisons at the cost of (n2) comparisons. We show that the same optimal guarantees can be achieved using 4 n 3/2 comparisons, and we prove the optimality of our method. We then explore the general tradeoff between the guarantees on the error that can be made and number of comparisons for the problems of sorting, max-finding, and selection. Our results provide close-to-optimal solutions for each of these problems.Engineering and Applied Science

    Lower bounds for on-line graph colorings

    Full text link
    We propose two strategies for Presenter in on-line graph coloring games. The first one constructs bipartite graphs and forces any on-line coloring algorithm to use 2log2n102\log_2 n - 10 colors, where nn is the number of vertices in the constructed graph. This is best possible up to an additive constant. The second strategy constructs graphs that contain neither C3C_3 nor C5C_5 as a subgraph and forces Ω(nlogn13)\Omega(\frac{n}{\log n}^\frac{1}{3}) colors. The best known on-line coloring algorithm for these graphs uses O(n12)O(n^{\frac{1}{2}}) colors

    Predicting Non-linear Cellular Automata Quickly by Decomposing Them into Linear Ones

    Full text link
    We show that a wide variety of non-linear cellular automata (CAs) can be decomposed into a quasidirect product of linear ones. These CAs can be predicted by parallel circuits of depth O(log^2 t) using gates with binary inputs, or O(log t) depth if ``sum mod p'' gates with an unbounded number of inputs are allowed. Thus these CAs can be predicted by (idealized) parallel computers much faster than by explicit simulation, even though they are non-linear. This class includes any CA whose rule, when written as an algebra, is a solvable group. We also show that CAs based on nilpotent groups can be predicted in depth O(log t) or O(1) by circuits with binary or ``sum mod p'' gates respectively. We use these techniques to give an efficient algorithm for a CA rule which, like elementary CA rule 18, has diffusing defects that annihilate in pairs. This can be used to predict the motion of defects in rule 18 in O(log^2 t) parallel time

    Finding the Median (Obliviously) with Bounded Space

    Full text link
    We prove that any oblivious algorithm using space SS to find the median of a list of nn integers from {1,...,2n}\{1,...,2n\} requires time Ω(nloglogSn)\Omega(n \log\log_S n). This bound also applies to the problem of determining whether the median is odd or even. It is nearly optimal since Chan, following Munro and Raman, has shown that there is a (randomized) selection algorithm using only ss registers, each of which can store an input value or O(logn)O(\log n)-bit counter, that makes only O(loglogsn)O(\log\log_s n) passes over the input. The bound also implies a size lower bound for read-once branching programs computing the low order bit of the median and implies the analog of PNPcoNPP \ne NP \cap coNP for length o(nloglogn)o(n \log\log n) oblivious branching programs

    Rigidity and Non-recurrence along Sequences

    Full text link
    Two properties of a dynamical system, rigidity and non-recurrence, are examined in detail. The ultimate aim is to characterize the sequences along which these properties do or do not occur for different classes of transformations. The main focus in this article is to characterize explicitly the structural properties of sequences which can be rigidity sequences or non-recurrent sequences for some weakly mixing dynamical system. For ergodic transformations generally and for weakly mixing transformations in particular there are both parallels and distinctions between the class of rigid sequences and the class of non-recurrent sequences. A variety of classes of sequences with various properties are considered showing the complicated and rich structure of rigid and non-recurrent sequences

    Solving the Shortest Vector Problem in Lattices Faster Using Quantum Search

    Full text link
    By applying Grover's quantum search algorithm to the lattice algorithms of Micciancio and Voulgaris, Nguyen and Vidick, Wang et al., and Pujol and Stehl\'{e}, we obtain improved asymptotic quantum results for solving the shortest vector problem. With quantum computers we can provably find a shortest vector in time 21.799n+o(n)2^{1.799n + o(n)}, improving upon the classical time complexity of 22.465n+o(n)2^{2.465n + o(n)} of Pujol and Stehl\'{e} and the 22n+o(n)2^{2n + o(n)} of Micciancio and Voulgaris, while heuristically we expect to find a shortest vector in time 20.312n+o(n)2^{0.312n + o(n)}, improving upon the classical time complexity of 20.384n+o(n)2^{0.384n + o(n)} of Wang et al. These quantum complexities will be an important guide for the selection of parameters for post-quantum cryptosystems based on the hardness of the shortest vector problem.Comment: 19 page
    corecore