239 research outputs found
Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.
The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease
A novel spontaneous model of epithelial-mesenchymal transition (EMT) using a primary prostate cancer derived cell line demonstrating distinct stem-like characteristics
Cells acquire the invasive and migratory properties necessary for the invasion-metastasis cascade and the establishment of aggressive, metastatic disease by reactivating a latent embryonic programme: epithelial-to-mesenchymal transition (EMT). Herein, we report the development of a new, spontaneous model of EMT which involves four phenotypically distinct clones derived from a primary tumour-derived human prostate cancer cell line (OPCT-1), and its use to explore relationships between EMT and the generation of cancer stem cells (CSCs) in prostate cancer. Expression of epithelial (E-cadherin) and mesenchymal markers (vimentin, fibronectin) revealed that two of the four clones were incapable of spontaneously activating EMT, whereas the others contained large populations of EMT-derived, vimentin-positive cells having spindle-like morphology. One of the two EMT-positive clones exhibited aggressive and stem cell-like characteristics, whereas the other was non-aggressive and showed no stem cell phenotype. One of the two EMT-negative clones exhibited aggressive stem cell-like properties, whereas the other was the least aggressive of all clones. These findings demonstrate the existence of distinct, aggressive CSC-like populations in prostate cancer, but, importantly, that not all cells having a potential for EMT exhibit stem cell-like properties. This unique model can be used to further interrogate the biology of EMT in prostate cancer
X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes
X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases
Ultrasound measurement of joint cartilage thickness in large and small joints in healthy children: a clinical pilot study assessing observer variability
<p>Abstract</p> <p>Background</p> <p>Loss of joint cartilage is a feature of destructive disease in JIA. The cartilage of most joints can be visualized with ultrasonography (US). Our present study focuses on discriminant validity of US in children. We studied reproducibility between and within a skilled and a non-skilled investigator of US assessment of cartilage thickness in small and large joints in healthy children.</p> <p>Methods and results</p> <p>In 11 healthy children (5 girls/6 boys), aged 9.6 years (9.3–10 years), 110 joints were examined. Cartilage thickness of the right and left hip, knee, ankle, 2<sup>nd </sup>metacarpophalangeal (MCP), and 2<sup>nd </sup>proximal interphalangeal (PIP) joint independently. The joints were examined twice, two days apart by a skilled and a non-skilled investigator. Mean cartilage thickness in the five joints was: hip 2.59 ± 0.41, knee 3.67 ± 0.64, ankle 1.08 ± 0.31, MCP 1.52 ± 0.27 and PIP 0.73 ± 0.15 mm. We found the same mean differences in CTh of 0.6 mm in the inter-observer part with regard of the PIP joint. Within investigators (intra-observer), the smallest mean difference of CTh was found in the MCP joint with -0.004 (skilled) and 0.013 mm (non-skilled).</p> <p>Conclusion</p> <p>We found the level of agreement between observers within a 95% Confidence Interval in assessment of cartilage thickness in hip-, knee-, ankle-, MCP-, and PIP joints in healthy children. Observer variability seems not to relate to joint size but to the positioning of the joints and the transducer. These factors seem to be of major importance for reproducible US measurements. The smallest difference in measurement of cartilage thickness <it>between observers </it>was found in the PIP joint, and <it>within observers </it>in the MCP joint and it seems that using EULAR standard US guidelines is feasible for a pediatric setting. The use of US in children is promising. Studies on larger groups of children are needed to confirm the validation and variability of US in children as well as determining the smallest detectable difference of US measures.</p
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Long-term disability in neuromyelitis optica spectrum disorder with a history of myelitis is associated with age at onset, delay in diagnosis/preventive treatment, MRI lesion length and presence of symptomatic brain lesions
BACKGROUND:Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the central nervous system (CNS) that preferentially targets the spinal cord and optic nerves. Increasing disability is accrued with each inflammatory attack. Disability has been shown to be an independent predictor of poor quality of life in those with NMOSD. Factors associated with increasing disability need further systematic investigation. METHODS:We performed a multi-center retrospective chart analysis of aquaporin-4 (AQP4) seropositive NMOSD patients with a history of myelitis seen at five large referral centers for patients with NMOSD worldwide for whom thorough records including relapse history and corresponding imaging were available. Potential contributors to long-term disability were extracted including demographics, radiographic findings, and clinical characteristics. Multivariable regression modeling was conducted to determine correlates of disability in patients with NMOSD, as measured by the Expanded Disability Status Scale (EDSS). RESULTS:One hundred eighty-two AQP4 seropositive patients (88% female) were included in this analysis. Multiple regression modeling revealed that older age at disease onset, delay in diagnosis/preventive treatment, length of longest acute myelitis lesion and presence of symptomatic brain/brainstem lesions were associated with increased disability when holding other variables constant. CONCLUSION:While age at onset is a factor that cannot be controlled in NMOSD, we can reduce the delay in diagnosis/preventive treatment and reduce future relapses in the brain/brainstem and spinal cord. Delay in diagnosis/preventive treatment and imaging variables that contributed to increased disability support the need for improved measures for early, accurate diagnosis and management of NMOSD, and aggressive treatment of acute relapses
Inter -and intraobserver variation of ultrasonographic cartilage thickness assessments in small and large joints in healthy children
<p>Abstract</p> <p>Background</p> <p>There is an increasing interest among pediatric rheumatologist for using ultrasonography (US) in the daily clinical examination of children with juvenile idiopathic arthritis (JIA). Loss of joint cartilage may be an early feature of destructive disease in JIA. However, US still needs validation before it can be used as a diagnostic bedside tool in a pediatric setting. This study aims to assess the inter- and intraobserver reliability of US measurements of cartilage thickness in the joints of healthy children.</p> <p>Methods</p> <p>740 joints of 74 healthy Caucasian children (27 girls/47 boys), aged 11.3 (7.11 – 16) years were examined with bilateral US in 5 preselected joints to assess the interobserver variability. In 17 of these children (6 girls/11 boys), aged 10.1(7.11–11.1) years, 170 joints was examined in an intraobserver sub study, with a 2 week interval between the first and second examination.</p> <p>Results</p> <p>In this study we found a good inter- and intraobserver agreement expressed as a coefficient of variation (CV) less than 10% in the knee (CV = 9.5%<sub>interobserver </sub>and 5.9%<sub>intraobservserI</sub>, 9.3%<sub>intraobserverII </sub>respectively for the two intraobserver measurements) and fairly good for the MCP joints (CV = 11.9%<sub>interobserver</sub>, 12.9%<sub>intraobserverI </sub>and 11.9%<sub>intraobsevrerII</sub>). In the ankle and PIP joints the inter- and intraobserver agreement was within an acceptable limit (CV<20%) but not for the wrist joint (CV>26%). We found no difference in cartilage thickness between the left and right extremity in the investigated joints.</p> <p>Conclusion</p> <p>We found a good inter -and intraobserver agreement when measuring cartilage thickness with US. The inter- and intraobserver variation seemed not to be related to joint size. These findings suggest that positioning of the joint and the transducer is of major importance for reproducible US measurements. We found no difference in joint cartilage thickness between the left and right extremity in any of the examined joint of the healthy children. This is an important finding giving the opportunity of using the non-affected extremity as a reference when assessing articular joint cartilage damage in JIA.</p
Musculoskeletal ultrasound imaging of the plantar forefoot in patients with rheumatoid arthritis: inter-observer agreement between a podiatrist and a radiologist
Feasibility of a standardized ultrasound examination in patients with rheumatoid arthritis: a quality improvement among rheumatologists cohort
Flexor Hallucis Longus tendon rupture in RA-patients is associated with MTP 1 damage and pes planus
<p>Abstract</p> <p>Background</p> <p>To assess the prevalence of and relation between rupture or tenosynovitis of the Flexor Hallucis Longus (FHL) tendon and range of motion, deformities and joint damage of the forefoot in RA patients with foot complaints.</p> <p>Methods</p> <p>Thirty RA patients with painful feet were analysed, their feet were examined clinically for the presence of pes planus and range of motion (ROM), radiographs were scored looking for the presence of forefoot damage, and ultrasound examination was performed, examining the presence of tenosyovitis or rupture of the FHL at the level of the medial malleolus. The correlation between the presence or absence of the FHL and ROM, forefoot damage and pes planus was calculated.</p> <p>Results</p> <p>In 11/60(18%) of the feet, a rupture of the FHL was found. This was associated with a limited motion of the MTP1-joint, measured on the JAM (χ<sup>2 </sup>= 10.4, p = 0.034), a higher prevalence of pes planus (χ<sup>2 </sup>= 5.77, p = 0.016) and a higher prevalence of erosions proximal at the MTP-1 joint (χ<sup>2 </sup>= 12.3, p = 0.016), and joint space narrowing of the MTP1 joint (χ<sup>2 </sup>= 12.7, p = 0.013).</p> <p>Conclusion</p> <p>Rupture of the flexor hallucis longus tendon in RA-patients is associated with limited range of hallux motion, more erosions and joint space narrowing of the MTP-1-joint, as well as with pes planus.</p
- …
