1,479 research outputs found
‘Not just men in grey suits’: an Accounting, Finance and Business Massive Open Online Course
In 2014, ICAEW asked the University of Leeds (UoL) to co-develop an accounting and finance massive open online course (MOOC), ‘The Importance of Money in Business’. The target audience was pre-university and undergraduate students. This article explains the development process, structure and pedagogies, and analyses learner characteristics, behaviour and feedback using a range of data. It builds on prior literature and a research programme at UoL (Elston and Morris, 2015; Morris, Hotchkiss & Swinnerton, 2015; Swinnerton, Hotchkiss, Morris & Pickering, 2017a; Swinnerton, Hotchkiss & Morris, 2017b), which has developed and delivered more than 30 FutureLearn MOOCs across a range of subjects. The development process took 15 months to develop a four week course, and included a range of resources and activities including animated video, interactive exercises and quizzes. Over 18,000 people enrolled on two runs of the course. This article contributes to the literature by providing insights into the development and delivery of the course, its learners, their preferences and behaviours while taking the course, which will assist others embarking on MOOC or online learning development
Synchronized dynamics of cortical neurons with time-delay feedback
The dynamics of three mutually coupled cortical neurons with time delays in
the coupling are explored numerically and analytically. The neurons are coupled
in a line, with the middle neuron sending a somewhat stronger projection to the
outer neurons than the feedback it receives, to model for instance the relay of
a signal from primary to higher cortical areas. For a given coupling
architecture, the delays introduce correlations in the time series at the
time-scale of the delay. It was found that the middle neuron leads the outer
ones by the delay time, while the outer neurons are synchronized with zero lag
times. Synchronization is found to be highly dependent on the synaptic time
constant, with faster synapses increasing both the degree of synchronization
and the firing rate. Analysis shows that presynaptic input during the
interspike interval stabilizes the synchronous state, even for arbitrarily weak
coupling, and independent of the initial phase. The finding may be of
significance to synchronization of large groups of cells in the cortex that are
spatially distanced from each other.Comment: 21 pages, 11 figure
Superluminal motion of a relativistic jet in the neutron star merger GW170817
The binary neutron star merger GW170817 was accompanied by radiation across
the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance
of 41+/-3 Mpc. The radio and X-ray afterglows of GW170817 exhibited delayed
onset, a gradual rise in the emission with time as t^0.8, a peak at about 150
days post-merger, followed by a relatively rapid decline. To date, various
models have been proposed to explain the afterglow emission, including a
choked-jet cocoon and a successful-jet cocoon (a.k.a. structured jet). However,
the observational data have remained inconclusive as to whether GW170817
launched a successful relativistic jet. Here we show, through Very Long
Baseline Interferometry, that the compact radio source associated with GW170817
exhibits superluminal motion between two epochs at 75 and 230 days post-merger.
This measurement breaks the degeneracy between the models and indicates that,
while the early-time radio emission was powered by a wider-angle outflow
(cocoon), the late-time emission was most likely dominated by an energetic and
narrowly-collimated jet, with an opening angle of <5 degrees, and observed from
a viewing angle of about 20 degrees. The imaging of a collimated relativistic
outflow emerging from GW170817 adds substantial weight to the growing evidence
linking binary neutron star mergers and short gamma-ray bursts.Comment: 42 pages, 4 figures (main text), 2 figures (supplementary text), 2
tables. Referee and editor comments incorporate
New insights into the classification and nomenclature of cortical GABAergic interneurons.
A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus
A Measurement of Rb using a Double Tagging Method
The fraction of Z to bbbar events in hadronic Z decays has been measured by
the OPAL experiment using the data collected at LEP between 1992 and 1995. The
Z to bbbar decays were tagged using displaced secondary vertices, and high
momentum electrons and muons. Systematic uncertainties were reduced by
measuring the b-tagging efficiency using a double tagging technique. Efficiency
correlations between opposite hemispheres of an event are small, and are well
understood through comparisons between real and simulated data samples. A value
of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is
statistical and the second systematic. The uncertainty on Rc, the fraction of Z
to ccbar events in hadronic Z decays, is not included in the errors. The
dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the
deviation of Rc from the value 0.172 predicted by the Standard Model. The
result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the
Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European
Physical Journal
Measurement of the B+ and B-0 lifetimes and search for CP(T) violation using reconstructed secondary vertices
The lifetimes of the B+ and B-0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z(0) decays recorded at LEP. Z(0) --> b (b) over bar decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results aretau(B+) = 1.643 +/- 0.037 +/- 0.025 pstau(Bo) = 1.523 +/- 0.057 +/- 0.053 pstau(B+)/tau(Bo) = 1.079 +/- 0.064 +/- 0.041,where in each case the first error is statistical and the second systematic.A larger data sample of 3.1 million hadronic Z(o) decays has been used to search for CP and CPT violating effects by comparison of inclusive b and (b) over bar hadron decays, No evidence fur such effects is seen. The CP violation parameter Re(epsilon(B)) is measured to be Re(epsilon(B)) = 0.001 +/- 0.014 +/- 0.003and the fractional difference between b and (b) over bar hadron lifetimes is measured to(Delta tau/tau)(b) = tau(b hadron) - tau((b) over bar hadron)/tau(average) = -0.001 +/- 0.012 +/- 0.008
Recommended from our members
Large differences in regional precipitation change between a first and second 2 K of global warming
For adaptation and mitigation planning, stakeholders need reliable information about regional precipitation changes under different emissions scenarios and for different time periods. A significant amount of current planning effort assumes that each K of global warming produces roughly the same regional climate change. Here using 25 climate models, we compare precipitation responses with three 2 K intervals of global ensemble mean warming: a fast and a slower route to a first 2 K above pre-industrial levels, and the end-of-century difference between high-emission and mitigation scenarios. We show that, although the two routes to a first 2 K give very similar precipitation changes, a second 2 K produces quite a different response. In particular, the balance of physical mechanisms responsible for climate model uncertainty is different for a first and a second 2 K of warming. The results are consistent with a significant influence from nonlinear physical mechanisms, but aerosol and land-use effects may be important regionally
Developing a community based psychosocial intervention with older people and third sector workers for anxiety and depression: a qualitative study
Background: One-in-five people in the UK experience anxiety and/or depression in later life. However, anxiety and depression remain poorly detected in older people, particularly in those with chronic physical ill health. In the UK, a stepped care approach, to manage common mental health problems, is advocated which includes service provision from non-statutory organisations (including third/voluntary sector). However, evidence to support such provision, including the most effective interventions, is limited. The qualitative study reported here constitutes the first phase of a feasibility study which aims to assess whether third sector workers can deliver a psychosocial intervention to older people with anxiety and/or depression. The aim of this qualitative study is to explore the views of older people and third sector workers about anxiety and depression among older people in order to refine an intervention to be delivered by third sector workers.
Methods: Semi-structured interviews with participants recruited through purposive sampling from third sector groups in North Staffordshire. Interviews were digitally recorded with consent, transcribed and analysed using principles of constant comparison.
Results: Nineteen older people and 9 third sector workers were interviewed. Key themes included: multiple forms of loss, mental health as a personal burden to bear, having courage and providing/receiving encouragement, self- worth and the value of group activities, and tensions in existing service provision, including barriers and gaps.
Conclusions: The experience of loss was seen as central to feelings of anxiety and depression among community- dwelling older people. This study contributes to the evidence pointing to the scale and severity of mental health needs for some older people which can arise from multiple forms of loss, and which present a significant challenge to health, social care and third sector services. The findings informed development of a psychosocial intervention and training for third sector workers to deliver the intervention
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Frequency-specific hippocampal-prefrontal interactions during associative learning
Much of our knowledge of the world depends on learning associations (for example, face-name), for which the hippocampus (HPC) and prefrontal cortex (PFC) are critical. HPC-PFC interactions have rarely been studied in monkeys, whose cognitive and mnemonic abilities are akin to those of humans. We found functional differences and frequency-specific interactions between HPC and PFC of monkeys learning object pair associations, an animal model of human explicit memory. PFC spiking activity reflected learning in parallel with behavioral performance, whereas HPC neurons reflected feedback about whether trial-and-error guesses were correct or incorrect. Theta-band HPC-PFC synchrony was stronger after errors, was driven primarily by PFC to HPC directional influences and decreased with learning. In contrast, alpha/beta-band synchrony was stronger after correct trials, was driven more by HPC and increased with learning. Rapid object associative learning may occur in PFC, whereas HPC may guide neocortical plasticity by signaling success or failure via oscillatory synchrony in different frequency bands.National Institute of Mental Health (U.S.) (Conte Center Grant P50-MH094263-03)National Institute of Mental Health (U.S.) (Fellowship F32-MH081507)Picower Foundatio
- …
