2,929 research outputs found
Supervised ANN vs. unsupervised SOM to classify EEG data for BCI: why can GMDH do better?
Construction of a system for measuring the brain activity (electroencephalogram (EEG)) and recognising thinking patterns comprises significant challenges, in addition to the noise and distortion present in any measuring technique. One of the most major applications of measuring
and understanding EGG is the brain-computer interface (BCI) technology. In this paper, ANNs (feedforward back
-prop and Self Organising Maps) for EEG data classification will be implemented and compared to abductive-based networks, namely GMDH (Group Methods of Data Handling) to show how GMDH can optimally (i.e. noise and accuracy) classify a given set of BCI’s EEG signals. It is shown that GMDH provides such improvements. In this endeavour, EGG classification based on GMDH will be researched for
comprehensible classification without scarifying accuracy.
GMDH is suggested to be used to optimally classify a given
set of BCI’s EEG signals. The other areas related to BCI will
also be addressed yet within the context of this purpose
Pentacene islands grown on ultra-thin SiO2
Ultra-thin oxide (UTO) films were grown on Si(111) in ultrahigh vacuum at
room temperature and characterized by scanning tunneling microscopy. The
ultra-thin oxide films were then used as substrates for room temperature growth
of pentacene. The apparent height of the first layer is 1.57 +/- 0.05 nm,
indicating standing up pentacene grains in the thin-film phase were formed.
Pentacene is molecularly resolved in the second and subsequent molecular
layers. The measured in-plane unit cell for the pentacene (001) plane (ab
plane) is a=0.76+/-0.01 nm, b=0.59+/-0.01 nm, and gamma=87.5+/-0.4 degrees. The
films are unperturbed by the UTO's short-range spatial variation in tunneling
probability, and reduce its corresponding effective roughness and correlation
exponent with increasing thickness. The pentacene surface morphology follows
that of the UTO substrate, preserving step structure, the long range surface
rms roughness of ~0.1 nm, and the structural correlation exponent of ~1.Comment: 15 pages, 4 figure
Sensory Electrical Stimulation Improves Foot Placement during Targeted Stepping Post-Stroke
Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement
The Wide Brown Dwarf Binary Oph 1622-2405 and Discovery of A Wide, Low Mass Binary in Ophiuchus (Oph 1623-2402): A New Class of Young Evaporating Wide Binaries?
We imaged five objects near the star forming clouds of Ophiuchus with the
Keck Laser Guide Star AO system. We resolved Allers et al. (2006)'s #11 (Oph
16222-2405) and #16 (Oph 16233-2402) into binary systems. The #11 object is
resolved into a 243 AU binary, the widest known for a very low mass (VLM)
binary. The binary nature of #11 was discovered first by Allers (2005) and
independently here during which we obtained the first spatially resolved R~2000
near-infrared (J & K) spectra, mid-IR photometry, and orbital motion estimates.
We estimate for 11A and 11B gravities (log(g)>3.75), ages (5+/-2 Myr),
luminosities (log(L/Lsun)=-2.77+/-0.10 and -2.96+/-0.10), and temperatures
(Teff=2375+/-175 and 2175+/-175 K). We find self-consistent DUSTY evolutionary
model (Chabrier et al. 2000) masses of 17+4-5 MJup and 14+6-5 MJup, for 11A and
11B respectively. Our masses are higher than those previously reported (13-15
MJup and 7-8 MJup) by Jayawardhana & Ivanov (2006b). Hence, we find the system
is unlikely a ``planetary mass binary'', (in agreement with Luhman et al. 2007)
but it has the second lowest mass and lowest binding energy of any known
binary. Oph #11 and Oph #16 belong to a newly recognized population of wide
(>100 AU), young (<10 Myr), roughly equal mass, VLM stellar and brown dwarf
binaries. We deduce that ~6+/-3% of young (<10 Myr) VLM objects are in such
wide systems. However, only 0.3+/-0.1% of old field VLM objects are found in
such wide systems. Thus, young, wide, VLM binary populations may be
evaporating, due to stellar encounters in their natal clusters, leading to a
field population depleted in wide VLM systems.Comment: Accepted version V2. Now 13 pages longer (45 total) due to a new
discussion of the stability of the wide brown dwarf binary population, new
summary Figure 17 now included, Astrophysical Journal 2007 in pres
Pathfinder first light: alignment, calibration, and commissioning of the LINC-NIRVANA ground-layer adaptive optics subsystem
We present descriptions of the alignment and calibration tests of the
Pathfinder, which achieved first light during our 2013 commissioning campaign
at the LBT. The full LINC-NIRVANA instrument is a Fizeau interferometric imager
with fringe tracking and 2-layer natural guide star multi-conjugate adaptive
optics (MCAO) systems on each eye of the LBT. The MCAO correction for each side
is achieved using a ground layer wavefront sensor that drives the LBT adaptive
secondary mirror and a mid-high layer wavefront sensor that drives a Xinetics
349 actuator DM conjugated to an altitude of 7.1 km. When the LINC-NIRVANA MCAO
system is commissioned, it will be one of only two such systems on an 8-meter
telescope and the only such system in the northern hemisphere. In order to
mitigate risk, we take a modular approach to commissioning by decoupling and
testing the LINC-NIRVANA subsystems individually. The Pathfinder is the
ground-layer wavefront sensor for the DX eye of the LBT. It uses 12 pyramid
wavefront sensors to optically co-add light from natural guide stars in order
to make four pupil images that sense ground layer turbulence. Pathfinder is now
the first LINC-NIRVANA subsystem to be fully integrated with the telescope and
commissioned on sky. Our 2013 commissioning campaign consisted of 7 runs at the
LBT with the tasks of assembly, integration and communication with the LBT
telescope control system, alignment to the telescope optical axis, off-sky
closed loop AO calibration, and finally closed loop on-sky AO. We present the
programmatics of this campaign, along with the novel designs of our alignment
scheme and our off-sky calibration test, which lead to the Pathfinder's first
on-sky closed loop images
Astro2020 Science White Paper: Triggered High-Priority Observations of Dynamic Solar System Phenomena
Unexpected dynamic phenomena have surprised solar system observers in the
past and have led to important discoveries about solar system workings.
Observations at the initial stages of these events provide crucial information
on the physical processes at work. We advocate for long-term/permanent programs
on ground-based and space-based telescopes of all sizes - including Extremely
Large Telescopes (ELTs) - to conduct observations of high-priority dynamic
phenomena, based on a predefined set of triggering conditions. These programs
will ensure that the best initial dataset of the triggering event are taken;
separate additional observing programs will be required to study the temporal
evolution of these phenomena. While not a comprehensive list, the following are
notional examples of phenomena that are rare, that cannot be anticipated, and
that provide high-impact advances to our understandings of planetary processes.
Examples include: new cryovolcanic eruptions or plumes on ocean worlds; impacts
on Jupiter, Saturn, Uranus, or Neptune; extreme eruptions on Io; convective
superstorms on Saturn, Uranus, or Neptune; collisions within the asteroid belt
or other small-body populations; discovery of an interstellar object passing
through our solar system (e.g. 'Oumuamua); and responses of planetary
atmospheres to major solar flares or coronal mass ejections.Comment: Astro2020 white pape
Physical Properties of (2) Pallas
We acquired and analyzed adaptive-optics imaging observations of asteroid (2)
Pallas from Keck II and the Very Large Telescope taken during four Pallas
oppositions between 2003 and 2007, with spatial resolution spanning 32-88 km
(image scales 13-20 km/pix). We improve our determination of the size, shape,
and pole by a novel method that combines our AO data with 51 visual
light-curves spanning 34 years of observations as well as occultation data.
The shape model of Pallas derived here reproduces well both the projected
shape of Pallas on the sky and light-curve behavior at all the epochs
considered. We resolved the pole ambiguity and found the spin-vector
coordinates to be within 5 deg. of [long, lat] = [30 deg., -16 deg.] in the
ECJ2000.0 reference frame, indicating a high obliquity of ~84 deg., leading to
high seasonal contrast. The best triaxial-ellipsoid fit returns radii of a=275
km, b= 258 km, and c= 238 km. From the mass of Pallas determined by
gravitational perturbation on other minor bodies [(1.2 +/- 0.3) x 10-10 Solar
Masses], we derive a density of 3.4 +/- 0.9 g.cm-3 significantly different from
the density of C-type (1) Ceres of 2.2 +/- 0.1 g.cm-3. Considering the spectral
similarities of Pallas and Ceres at visible and near-infrared wavelengths, this
may point to fundamental differences in the interior composition or structure
of these two bodies.
We define a planetocentric longitude system for Pallas, following IAU
guidelines. We also present the first albedo maps of Pallas covering ~80% of
the surface in K-band. These maps reveal features with diameters in the 70-180
km range and an albedo contrast of about 6% wrt the mean surface albedo.Comment: 16 pages, 8 figures, 6 table
- …
