899 research outputs found

    Capturing the Industrial Requirements of Set-Based Design for the CONGA Framework

    Get PDF
    The Configuration Optimisation of Next-Generation Aircraft (CONGA) is a proposed framework in a response to industrial need to enhance the aerospace capability in the UK. In order to successfully address this challenge, a need to develop a true multi-disciplinary Set-Based Design (SBD) capability that could deploy new technologies on novel configurations more quickly and with greater confidence was identified. This paper presents the first step towards the development of the SBD capabilities which is to elicit the industrial requirement of the SBD process for the key aerospace industrial partners involved in this CONGA approach

    Capturing the industrial requirements of set-based design for CONGA framework

    Get PDF
    The Configuration Optimisation of Next-Generation Aircraft (CONGA) is a proposed framework in a response industrial need to enhance the aerospace capability in the UK. In order to successfully address this challenge, a need to develop a true multi-disciplinary Set-Based Design (SBD) capability that could deploy new technologies on novel configurations more quickly and with greater confidence was identified. This paper presents the first step towards the development of the SBD capabilities which is to elicit the industrial requirement of the SBD process for the key aerospace industrial partners involved in this CONGA approach

    Search for the decay B+K0K+B^+\rightarrow\overline{K}{}^{*0}K^{*+} at Belle

    Full text link
    We report a search for the rare charmless decay B+K0K+B^+\rightarrow\overline{K}{}^{*0}K^{*+} using a data sample of 772×106772\times10^6 BBˉB\bar{B} pairs collected at the Υ(4S)\Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+ee^+e^- collider. No statistically significant signal is found and a 90% confidence-level upper limit is set on the decay branching fraction as B(B+K0K+)<1.31×106 \mathcal{B}(B^+\rightarrow\overline{K}{}^{*0}K^{*+}) <1.31\times 10^{-6}.Comment: 8 pages, 3 figures, submitted to PRD(RC

    Evidence of Υ(1S)J/ψ+χc1\Upsilon(1S) \to J/\psi+\chi_{c1} and search for double-charmonium production in Υ(1S)\Upsilon(1S) and Υ(2S)\Upsilon(2S) decays

    Full text link
    Using data samples of 102×106102\times10^6 Υ(1S)\Upsilon(1S) and 158×106158\times10^6 Υ(2S)\Upsilon(2S) events collected with the Belle detector, a first experimental search has been made for double-charmonium production in the exclusive decays Υ(1S,2S)J/ψ(ψ)+X\Upsilon(1S,2S)\rightarrow J/\psi(\psi')+X, where X=ηcX=\eta_c, χcJ(J= 0, 1, 2)\chi_{cJ} (J=~0,~1,~2), ηc(2S)\eta_c(2S), X(3940)X(3940), and X(4160)X(4160). No significant signal is observed in the spectra of the mass recoiling against the reconstructed J/ψJ/\psi or ψ\psi' except for the evidence of χc1\chi_{c1} production with a significance of 4.6σ4.6\sigma for Υ(1S)J/ψ+χc1\Upsilon(1S)\rightarrow J/\psi+\chi_{c1}. The measured branching fraction \BR(\Upsilon(1S)\rightarrow J/\psi+\chi_{c1}) is (3.90±1.21(stat.)±0.23(syst.))×106(3.90\pm1.21(\rm stat.)\pm0.23 (\rm syst.))\times10^{-6}. The 90%90\% confidence level upper limits on the branching fractions of the other modes having a significance of less than 3σ3\sigma are determined. These results are consistent with theoretical calculations using the nonrelativistic QCD factorization approach.Comment: 12 pages, 4 figures, 1 table. The fit range was extended to include X(4160) signal according to referee's suggestions. Other results unchanged. Paper was accepted for publication as a regular article in Physical Review

    Observation of a new charged charmoniumlike state in B -> J/psi K pi decays

    Full text link
    We present the results of an amplitude analysis of anti-B0 -> J/psi K- pi+ decays. A new charged charmoniumlike state Zc(4200)+ decaying to J/psi pi+ is observed with a significance of 6.2 sigma. The mass and width of the Zc(4200)+ are 4196 +31-29 +17-13 MeV/c^2 and 370 +70-70 +70-132 MeV, respectively; the preferred assignment of the quantum numbers is J^P = 1^+. In addition, we find evidence for Zc(4430)+ -> J/psi pi+. The analysis is based on a 711 fb^-1 data sample collected by the Belle detector at the asymmetric-energy e+ e- collider KEKB.Comment: 14 pages, 13 figure

    Evidence for Isospin Violation and Measurement of CPCP Asymmetries in BK(892)γB \to K^{\ast}(892) \gamma

    Full text link
    We report the first evidence for isospin violation in BKγB \to K^* \gamma and the first measurement of difference of CPCP asymmetries between B+K+γB^+ \to K^{*+} \gamma and B0K0γB^0 \to K^{*0} \gamma. This analysis is based on the data sample containing 772×106BBˉ772 \times 10^6 B\bar{B} pairs that was collected with the Belle detector at the KEKB energy-asymmetric e+ee^+ e^- collider. We find evidence for the isospin violation with a significance of 3.1σ\sigma, Δ0+=(+6.2±1.5(stat.)±0.6(syst.)±1.2(f+/f00))\Delta_{0+} = (+6.2 \pm 1.5 ({\rm stat.}) \pm 0.6 ({\rm syst.}) \pm 1.2 (f_{+-}/f_{00}))\%, where the third uncertainty is due to the uncertainty on the fraction of B+BB^+B^- to B0Bˉ0B^0\bar{B}^0 production in Υ(4S)\Upsilon(4S) decays. The measured value is consistent with predictions of the SM. The result for the difference of CPCP asymmetries is ΔACP=(+2.4±2.8(stat.)±0.5(syst.))\Delta A_{CP} = (+2.4 \pm 2.8({\rm stat.}) \pm 0.5({\rm syst.}))\%, consistent with zero. The measured branching fractions and CPCP asymmetries for charged and neutral BB meson decays are the most precise to date. We also calculate the ratio of branching fractions of B0K0γB^0 \to K^{*0} \gamma to Bs0ϕγB_s^0 \to \phi \gamma.Comment: 11 pages, 7 figures. shown at FPCP2017. accepted by PR

    Measurement of the CKM Matrix Element Vcb|V_{cb}| from B0D+νB^{0} \to D^{*-} \ell^+ \nu_\ell at Belle

    Get PDF
    We present a new measurement of the CKM matrix element Vcb|V_{cb}| from B0D+νB^{0} \to D^{*-} \ell^+ \nu_\ell decays, reconstructed with the full Belle data set of 711fb1711 \, \rm fb^{-1} integrated luminosity. Two form factor parameterizations, originally conceived by the Caprini-Lellouch-Neubert (CLN) and the Boyd, Grinstein and Lebed (BGL) groups, are used to extract the product F(1)ηEWVcb\mathcal{F}(1)\eta_{\rm EW}|V_{cb}| and the decay form factors, where F(1)\mathcal{F}(1) is the normalization factor and ηEW\eta_{\rm EW} is a small electroweak correction. In the CLN parameterization we find F(1)ηEWVcb=(35.06±0.15±0.56)×103\mathcal{F}(1)\eta_{\rm EW}|V_{cb}| = (35.06 \pm 0.15 \pm 0.56) \times 10^{-3}, ρ2=1.106±0.031±0.007\rho^{2}=1.106 \pm 0.031 \pm 0.007, R1(1)=1.229±0.028±0.009R_{1}(1)=1.229 \pm 0.028 \pm 0.009, R2(1)=0.852±0.021±0.006R_{2}(1)=0.852 \pm 0.021 \pm 0.006. For the BGL parameterization we obtain F(1)ηEWVcb=(34.93±0.23±0.59)×103\mathcal{F}(1)\eta_{\rm EW}|V_{cb}|= (34.93 \pm 0.23 \pm 0.59)\times 10^{-3}, which is consistent with the World Average when correcting for F(1)ηEW\mathcal{F}(1)\eta_{\rm EW}. The branching fraction of B0D+νB^{0} \to D^{*-} \ell^+ \nu_\ell is measured to be B(B0D+ν)=(4.90±0.02±0.16)%\mathcal{B}(B^{0}\rightarrow D^{*-}\ell^{+}\nu_{\ell}) = (4.90 \pm 0.02 \pm 0.16)\%. We also present a new test of lepton flavor universality violation in semileptonic BB decays, B(B0De+ν)B(B0Dμ+ν)=1.01±0.01±0.03 \frac{{\cal B }(B^0 \to D^{*-} e^+ \nu)}{{\cal B }(B^0 \to D^{*-} \mu^+ \nu)} = 1.01 \pm 0.01 \pm 0.03~. The errors correspond to the statistical and systematic uncertainties respectively. This is the most precise measurement of F(1)ηEWVcb\mathcal{F}(1)\eta_{\rm EW}|V_{cb}| and form factors to date and the first experimental study of the BGL form factor parameterization in an experimental measurement

    Measurement of the branching ratio of BˉD()τνˉτ\bar{B} \to D^{(\ast)} \tau^- \bar{\nu}_\tau relative to BˉD()νˉ\bar{B} \to D^{(\ast)} \ell^- \bar{\nu}_\ell decays with hadronic tagging at Belle

    Full text link
    We report a measurement of the branching fraction ratios R(D(*)) of Bbar -> D(*) tau- nubar_tau relative to Bbar -> D()* l- nubar_l (where l = e or mu) using the full Belle data sample of 772 x 10^6 BBbar pairs collected at the Y(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. The measured values are R(D)= 0.375 +- 0.064(stat.) +- 0.026(syst.) and R(D*) = 0.293 +- 0.038(stat.) +- 0.015(syst.). The analysis uses hadronic reconstruction of the tag-side B meson and purely leptonic tau decays. The results are consistent with earlier measurements and do not show a significant deviation from the standard model prediction.Comment: Accepted for publication in Phys.Rev.
    corecore