3,504 research outputs found

    The Wide Brown Dwarf Binary Oph 1622-2405 and Discovery of A Wide, Low Mass Binary in Ophiuchus (Oph 1623-2402): A New Class of Young Evaporating Wide Binaries?

    Full text link
    We imaged five objects near the star forming clouds of Ophiuchus with the Keck Laser Guide Star AO system. We resolved Allers et al. (2006)'s #11 (Oph 16222-2405) and #16 (Oph 16233-2402) into binary systems. The #11 object is resolved into a 243 AU binary, the widest known for a very low mass (VLM) binary. The binary nature of #11 was discovered first by Allers (2005) and independently here during which we obtained the first spatially resolved R~2000 near-infrared (J & K) spectra, mid-IR photometry, and orbital motion estimates. We estimate for 11A and 11B gravities (log(g)>3.75), ages (5+/-2 Myr), luminosities (log(L/Lsun)=-2.77+/-0.10 and -2.96+/-0.10), and temperatures (Teff=2375+/-175 and 2175+/-175 K). We find self-consistent DUSTY evolutionary model (Chabrier et al. 2000) masses of 17+4-5 MJup and 14+6-5 MJup, for 11A and 11B respectively. Our masses are higher than those previously reported (13-15 MJup and 7-8 MJup) by Jayawardhana & Ivanov (2006b). Hence, we find the system is unlikely a ``planetary mass binary'', (in agreement with Luhman et al. 2007) but it has the second lowest mass and lowest binding energy of any known binary. Oph #11 and Oph #16 belong to a newly recognized population of wide (>100 AU), young (<10 Myr), roughly equal mass, VLM stellar and brown dwarf binaries. We deduce that ~6+/-3% of young (<10 Myr) VLM objects are in such wide systems. However, only 0.3+/-0.1% of old field VLM objects are found in such wide systems. Thus, young, wide, VLM binary populations may be evaporating, due to stellar encounters in their natal clusters, leading to a field population depleted in wide VLM systems.Comment: Accepted version V2. Now 13 pages longer (45 total) due to a new discussion of the stability of the wide brown dwarf binary population, new summary Figure 17 now included, Astrophysical Journal 2007 in pres

    Communication issues in requirements elicitation: A content analysis of stakeholder experiences

    Get PDF
    The gathering of stakeholder requirements comprises an early, but continuous and highly critical stage in system development. This phase in development is subject to a large degree of error, influenced by key factors rooted in communication problems. This pilot study builds upon an existing theory-based categorisation of these problems through presentation of a four-dimensional framework on communication. Its structure is validated through a content analysis of interview data, from which themes emerge, that can be assigned to the dimensional categories, highlighting any problematic areas. The paper concludes with a discussion on the utilisation of the framework for requirements elicitation exercises

    Observations of chemical differentiation in clumpy molecular clouds

    Full text link
    We have extensively mapped a sample of dense molecular clouds (L1512, TMC-1C, L1262, Per 7, L1389, L1251E) in lines of HC3N, CH3OH, SO and C^{18}O. We demonstrate that a high degree of chemical differentiation is present in all of the observed clouds. We analyse the molecular maps for each cloud, demonstrating a systematic chemical differentiation across the sample, which we relate to the evolutionary state of the cloud. We relate our observations to the cloud physical, kinematical and evolutionary properties, and also compare them to the predictions of simple chemical models. The implications of this work for understanding the origin of the clumpy structures and chemical differentiation observed in dense clouds are discussed.Comment: 20 pages, 7 figures. Higher quality figures appear in the published journal articl

    Higgs After the Discovery: A Status Report

    Full text link
    Recently, the ATLAS and CMS collaborations have announced the discovery of a 125 GeV particle, commensurable with the Higgs boson. We analyze the 2011 and 2012 LHC and Tevatron Higgs data in the context of simplified new physics models, paying close attention to models which can enhance the diphoton rate and allow for a natural weak-scale theory. Combining the available LHC and Tevatron data in the ZZ* 4-lepton, WW* 2-lepton, diphoton, and b-bbar channels, we derive constraints on the effective low-energy theory of the Higgs boson. We map several simplified scenarios to the effective theory, capturing numerous new physics models such as supersymmetry, composite Higgs, dilaton. We further study models with extended Higgs sectors which can naturally enhance the diphoton rate. We find that the current Higgs data are consistent with the Standard Model Higgs boson and, consequently, the parameter space in all models which go beyond the Standard Model is highly constrained.Comment: 37 pages; v2: ATLAS dijet-tag diphoton channel added, dilaton and doublet-singlet bugs corrected, references added; v3: ATLAS WW channel included, comments and references adde

    Oxidised cosmic acceleration

    Full text link
    We give detailed proofs of several new no-go theorems for constructing flat four-dimensional accelerating universes from warped dimensional reduction. These new theorems improve upon previous ones by weakening the energy conditions, by including time-dependent compactifications, and by treating accelerated expansion that is not precisely de Sitter. We show that de Sitter expansion violates the higher-dimensional null energy condition (NEC) if the compactification manifold M is one-dimensional, if its intrinsic Ricci scalar R vanishes everywhere, or if R and the warp function satisfy a simple limit condition. If expansion is not de Sitter, we establish threshold equation-of-state parameters w below which accelerated expansion must be transient. Below the threshold w there are bounds on the number of e-foldings of expansion. If M is one-dimensional or R everywhere vanishing, exceeding the bound implies the NEC is violated. If R does not vanish everywhere on M, exceeding the bound implies the strong energy condition (SEC) is violated. Observationally, the w thresholds indicate that experiments with finite resolution in w can cleanly discriminate between different models which satisfy or violate the relevant energy conditions.Comment: v2: corrections, references adde

    Continuous-mode 448 kHz capacitive resistive monopolar radiofrequency induces greater deep blood flow changes compared to pulsed mode shortwave: a crossover study in healthy adults

    Get PDF
    This document is the Accepted Manuscript version of the following article: Binoy Kumaran, Anthony Herbland and Tim Watson, ‘Continuous-mode 448 kHz capacitive resistive monopolar radiofrequency induces greater deep blood flow changes compared to pulsed mode shortwave: a crossover study in healthy adults’, European Journal of Physiotheraphy, first published online 20 April 2017. The version of record is available online at doi: http://dx.doi.org/10.1080/21679169.2017.1316310. © 2017 Informa UK Limited, trading as Taylor & Francis Group.Aims: Radiofrequency-based electrophysical agents (EPAs) have been used in therapy practice over several decades (e.g. shortwave therapies). Currently, there is insufficient evidence supporting such EPAs operating below shortwave frequencies. This laboratory-based study investigated the deep physiological effects of 448 kHz capacitive resistive monopolar radiofrequency (CRMRF) and compared them to pulsed shortwave therapy (PSWT). Methods: In a randomized crossover study, 17 healthy volunteers initially received four treatment conditions: high, low and placebo dose conditions receiving 15-min CRMRF treatment and a control condition receiving no intervention. Fifteen participants additionally received high-dose PSWT as fifth condition, for comparison. Pre- and post-treatment measurements of deep blood flow and tissue extensibility were obtained using Doppler ultrasound and sonoelastography. Group data were compared using analysis of variance model. Statistical significance was set at p ≤ .05, 0.8 power, and 95% confidence interval. Results: Significant increases in volume and intensity of deep blood flow were obtained with CRMRF over placebo, control (p = .003) and PSWT (p < .001). No significant changes in blood flow velocity or tissue extensibility were noted for any condition. Conclusions: Deep blood flow changes with CRMRF were more pronounced than that with PSWT, placebo or control. Potential greater therapeutic benefits need to be confirmed with comparative clinical studies.Peer reviewe

    Interchange Slip-Running Reconnection and Sweeping SEP Beams

    Get PDF
    We present a new model to explain how particles (solar energetic particles; SEPs), accelerated at a reconnection site that is not magnetically connected to the Earth, could eventually propagate along the well-connected open flux tube. Our model is based on the results of a low-beta resistive magnetohydrodynamics simulation of a three-dimensional line-tied and initially current-free bipole, that is embedded in a non-uniform open potential field. The topology of this configuration is that of an asymmetric coronal null-point, with a closed fan surface and an open outer spine. When driven by slow photospheric shearing motions, field lines, initially fully anchored below the fan dome, reconnect at the null point, and jump to the open magnetic domain. This is the standard interchange mode as sketched and calculated in 2D. The key result in 3D is that, reconnected open field lines located in the vicinity of the outer spine, keep reconnecting continuously, across an open quasi-separatrix layer, as previously identified for non-open-null-point reconnection. The apparent slipping motion of these field lines leads to form an extended narrow magnetic flux tube at high altitude. Because of the slip-running reconnection, we conjecture that if energetic particles would be traveling through, or be accelerated inside, the diffusion region, they would be successively injected along continuously reconnecting field lines that are connected farther and farther from the spine. At the scale of the full Sun, owing to the super-radial expansion of field lines below 3 solar radii, such energetic particles could easily be injected in field lines slipping over significant distances, and could eventually reach the distant flux tube that is well-connected to the Earth

    Gender segregation, underemployment and subjective well-being in the UK labour market

    Get PDF
    This article argues that gender segregation influences patterns of underemployment and the relationships that underemployment has with the subjective well-being of men and women. Previous studies have paid little attention to how gender segregation shapes underemployment, an increasingly prominent feature of the UK and European labour markets since the economic crisis of 2008. Using data from the UK Annual Population Surveys, this article examines time-related underemployment: people working part time because they cannot find a full-time job. The article asks whether there are gender differences in underemployment trends and in the links between underemployment and subjective well-being. The results suggest that the probability of underemployment is growing at a faster rate among women rather than men and that underemployment is most common in the jobs that women are more likely to perform, namely in femaledominated occupations, the public sector and small organizations. Underemployment is least common in male-dominated occupations and industries and in the private sector. Moreover, for employees with longer tenures, underemployment has more negative relationships with the subjective well-being of women than with that of men. These findings imply that gender segregation in labour markets is a crucial factor to consider when researching underemployment and its consequences

    Structural studies of T4S systems by electron microscopy

    Get PDF
    Abstract: Type IV secretion (T4S) systems are large dynamic nanomachines that transport DNA and/or proteins through the membranes of bacteria. Analysis of T4S system architecture is an extremely challenging task taking into account their multi protein organisation and lack of overall global symmetry. Nonetheless the last decade demonstrated an amazing progress achieved by X-ray crystallography and cryo-electron microscopy. In this review we present a structural analysis of this dynamic complex based on recent advances in biochemical, biophysical and structural studies

    Neurovisceral phenotypes in the expression of psychiatric symptoms

    Get PDF
    This review explores the proposal that vulnerability to psychological symptoms, particularly anxiety, originates in constitutional differences in the control of bodily state, exemplified by a set of conditions that include Joint Hypermobility, Postural Tachycardia Syndrome and Vasovagal Syncope. Research is revealing how brainbody mechanisms underlie individual differences in psychophysiological reactivity that can be important for predicting, stratifying and treating individuals with anxiety disorders and related conditions. One common constitutional difference is Joint Hypermobility, in which there is an increased range of joint movement as a result of a variant of collagen. Joint hypermobility is over-represented in people with anxiety, mood and neurodevelopmental disorders. It is also linked to stress-sensitive medical conditions such as irritable bowel syndrome, chronic fatigue syndrome and fibromyalgia. Structural differences in 'emotional' brain regions are reported in hypermobile individuals, and many people with joint hypermobility manifest autonomic abnormalities, typically Postural Tachycardia Syndrome. Enhanced heart rate reactivity during postural change and as recently recognised factors causing vasodilatation (as noted post prandially, post exertion and with heat) is characteristic of Postural Tachycardia Syndrome, and there is a phenomenological overlap with anxiety disorders, which may be partially accounted for by exaggerated neural reactivity within ventromedial prefrontal cortex. People who experience Vasovagal Syncope, a heritable tendency to fainting induced by emotional challenges (and needle/blood phobia), are also more vulnerable to anxiety disorders. Neuroimaging implicates brainstem differences in vulnerability to faints, yet the structural integrity of the caudate nucleus appears important for the control of fainting frequency in relation to parasympathetic tone and anxiety. Together there is clinical and neuroanatomical evidence to show that common constitutional differences affecting autonomic responsivity are linked to psychiatric symptoms, notably anxiety
    corecore