92 research outputs found

    The foramen spinosum: a landmark in middle fossa surgery

    Get PDF
    The foramen spinosum is an easily identifiable landmark in microsurgery of the middle cranial fossa, and knowledge of the variations in its relationship to the surrounding neurovascular structures is important when operating in this area. We studied the anatomical relationship of the foramen spinosum to the foramen ovale, the mandibular branch of the trigeminal nerve, the greater superficial petrosal nerve, and the petrous part of the internal carotid artery in 12 cadaver heads. We also tried to define an external landmark for early identification of the location of the foramen spinosum in ten dry skulls. We found considerable variations in the anatomy around the foramen spinosum. This knowledge may improve the identification and preservation of the neurovascular structures when using approaches to the middle cranial foss

    The association of patient age with postoperative morbidity and mortality following resection of intracranial tumors

    Full text link
    INTRODUCTION The postoperative functional status of patients with intracranial tumors is influenced by patient-specific factors, including age. RESEARCH QUESTION This study aimed to elucidate the association between age and postoperative morbidity or mortality following the resection of brain tumors. MATERIAL AND METHODS A multicenter database was retrospectively reviewed. Functional status was assessed before and 3-6 months after tumor resection by the Karnofsky Performance Scale (KPS). Uni- and multivariable linear regression were used to estimate the association of age with postoperative change in KPS. Logistic regression models for a ≥10-point decline in KPS or mortality were built for patients ≥75 years. RESULTS The total sample of 4864 patients had a mean age of 56.4 ​± ​14.4 years. The mean change in pre-to postoperative KPS was -1.43. For each 1-year increase in patient age, the adjusted change in postoperative KPS was -0.11 (95% CI -0.14 - - 0.07). In multivariable analysis, patients ≥75 years had an odds ratio of 1.51 to experience postoperative functional decline (95%CI 1.21-1.88) and an odds ratio of 2.04 to die (95%CI 1.33-3.13), compared to younger patients. DISCUSSION Patients with intracranial tumors treated surgically showed a minor decline in their postoperative functional status. Age was associated with this decline in function, but only to a small extent. CONCLUSION Patients ≥75 years were more likely to experience a clinically meaningful decline in function and about two times as likely to die within the first 6 months after surgery, compared to younger patients

    Low agreement and frequent invalid controls in two SARS-CoV-2 T-cell assays in people with compromised immune function

    Get PDF
    T-cell response plays an important role in SARS-CoV-2 immunogenicity. For people living with HIV (PWH) and solid organ transplant (SOT) recipients there is limited evidence on the reliability of commercially available T-cell tests. We assessed 173 blood samples from 81 participants (62 samples from 35 PWH; 111 samples from 46 SOT recipients [lung and kidney]) with two commercial SARS-CoV-2 Interferon-γ (IFN-γ) release assays (IGRA; SARS-CoV-2 IGRA by Euroimmun, and IGRA SARS-CoV-2 by Roche). The reliability between the tests was judged as low (Cohen's kappa [κ] = 0.20; overall percent agreement [OPA] = 66%). A high proportion of tests were invalid (22% Euroimmun; 8% Roche). When excluding these invalid tests, the agreement was higher (κ  =  0.43; OPA = 90%). The low reliability between the two T-cell tests indicates that results should be interpreted with caution in SOT recipients and PWH and that SARS-CoV-2 T-cell tests need to be optimized and further validated for use in vulnerable patient populations

    Neurosurgery outcomes and complications in a monocentric 7-year patient registry

    Full text link
    Introduction Capturing adverse events reliably is paramount for clinical practice and research alike. In the era of “big data”, prospective registries form the basis of clinical research and quality improvement. Research question To present results of long-term implementation of a prospective patient registry, and evaluate the validity of the Clavien-Dindo grade (CDG) to classify complications in neurosurgery. Materials and methods A prospective registry for cranial and spinal neurosurgical procedures was implemented in 2013. The CDG – a complication grading focused on need for unplanned therapeutic intervention – was used to grade complications. We assess construct validity of the CDG. Results Data acquisition integrated into our hospital workflow permitted to include all eligible patients into the registry. We have registered 8226 patients that were treated in 11994 surgeries and 32494 consultations up until December 2020. Similarly, we have captured 1245 complications on 6308 patient discharge forms (20%) since full operational status of the registry. The majority of complications (819/6308 ​= ​13%) were treated without invasive treatment (CDG 1 or CDG 2). At discharge, there was a clear correlation of CDG and the Karnofsky Performance Status (KPS, rho ​= ​-0.29, slope -7 KPS percentage points per increment of CDG) and the length of stay (rho ​= ​0.43, slope 3.2 days per increment of CDG)

    Antibody and T-Cell Response to Bivalent Booster SARS-CoV-2 Vaccines in People With Compromised Immune Function: COVERALL-3 Study

    Get PDF
    Background Bivalent messenger RNA (mRNA) vaccines, designed to combat emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, incorporate ancestral strains and a new variant. Our study assessed the immune response in previously vaccinated individuals of the Swiss HIV Cohort Study (SHCS) and the Swiss Transplant Cohort Study (STCS) following bivalent mRNA vaccination. Methods Eligible SHCS and STCS participants received approved bivalent mRNA SARS-CoV-2 vaccines (mRNA-1273.214 or BA.1-adapted BNT162b2) within clinical routine. Blood samples were collected at baseline, 4 weeks, 8 weeks, and 6 months postvaccination. We analyzed the proportion of participants with anti-spike protein antibody response ≥1642 units/mL (indicating protection against SARS-CoV-2 infection), and in a subsample T-cell response (including mean concentrations), stratifying results by cohorts and population characteristics. Results In SHCS participants, baseline anti-spike antibody concentrations ≥1642 units/mL were observed in 87% (96/112), reaching nearly 100% at follow-ups. Among STCS participants, 58% (35/60) had baseline antibodies ≥1642 units/mL, increasing to 80% at 6 months. Except for lung transplant recipients, all participants showed a 5-fold increase in geometric mean antibody concentrations at 4 weeks and a reduction by half at 6 months. At baseline, T-cell responses were positive in 96% (26/27) of SHCS participants and 36% (16/45) of STCS participants (moderate increase to 53% at 6 months). Few participants reported SARS-CoV-2 infections, side-effects, or serious adverse events. Conclusions Bivalent mRNA vaccination elicited a robust humoral response in individuals with human immunodeficiency virus (HIV) or solid organ transplants, with delayed responses in lung transplant recipients. Despite a waning effect, antibody levels remained high at 6 months and adverse events were rare. Clinical Trials Registration . NCT04805125

    Development of an online calculator for the prediction of seizure freedom following pediatric hemispherectomy using the Hemispherectomy Outcome Prediction Scale (HOPS)

    Get PDF
    OBJECTIVES Although hemispheric surgeries are among the most effective procedures for drug-resistant epilepsy (DRE) in the pediatric population, there is a large variability in seizure outcomes at the group level. A recently developed HOPS score provides individualized estimation of likelihood of seizure freedom to complement clinical judgement. The objective of this study was to develop a freely accessible online calculator that accurately predicts the probability of seizure freedom for any patient at 1-, 2-, and 5-years post-hemispherectomy. METHODS Retrospective data of all pediatric patients with DRE and seizure outcome data from the original Hemispherectomy Outcome Prediction Scale (HOPS) study were included. The primary outcome of interest was time-to-seizure recurrence. A multivariate Cox proportional-hazards regression model was developed to predict the likelihood of post-hemispheric surgery seizure freedom at three time points (1-, 2- and 5- years) based on a combination of variables identified by clinical judgment and inferential statistics predictive of the primary outcome. The final model from this study was encoded in a publicly accessible online calculator on the International Network for Epilepsy Surgery and Treatment (iNEST) website (https://hops-calculator.com/). RESULTS The selected variables for inclusion in the final model included the five original HOPS variables (age at seizure onset, etiologic substrate, seizure semiology, prior non-hemispheric resective surgery, and contralateral fluorodeoxyglucose-positron emission tomography [FDG-PET] hypometabolism) and three additional variables (age at surgery, history of infantile spasms, and magnetic resonance imaging [MRI] lesion). Predictors of shorter time-to-seizure recurrence included younger age at seizure onset, prior resective surgery, generalized seizure semiology, FDG-PET hypometabolism contralateral to the side of surgery, contralateral MRI lesion, non-lesional MRI, non-stroke etiologies, and a history of infantile spasms. The area under the curve (AUC) of the final model was 73.0%. SIGNIFICANCE Online calculators are useful, cost-free tools that can assist physicians in risk estimation and inform joint decision-making processes with patients and families, potentially leading to greater satisfaction. Although the HOPS data was validated in the original analysis, the authors encourage external validation of this new calculator

    Positive feedbacks and alternative stable states in forest leaf types

    Get PDF
    The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4–43% higher growth rates, 14–17% higher survival rates and 4–7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks

    Climatic controls of decomposition drive the global biogeography of forest-tree symbioses

    Get PDF
    The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species

    Attention and binding in visual working memory : two forms of attention and two kinds of buffer storage

    Get PDF
    We review our research on the episodic buffer in the multicomponent model of working memory (Baddeley, 2000), making explicit the influence of Anne Treisman’s work on the way our research has developed. The crucial linking theme concerns binding, whereby the individual features of an episode are combined as integrated representations. We summarize a series of experiments on visual working memory that investigated the retention of feature bindings and individual features. The effects of cognitive load, perceptual distraction, prioritization, serial position, and their interactions form a coherent pattern. We interpret our findings as demonstrating contrasting roles of externally driven and internally driven attentional processes, as well as a distinction between visual buffer storage and the focus of attention. Our account has strong links with Treisman’s concept of focused attention and aligns with a number of contemporary approaches to visual working memory
    corecore