981 research outputs found
Direct comparison of methionine restriction with leucine restriction on the metabolic health of C57BL/6J mice
EKL was the recipient of a BBSRC postgraduate studentship. This work was funded by Tenovus Scotland project grant to MD and NM (G13/07) and BBSRC DTG. MD is also supported by the British Heart Foundation (PG/09/048/27675, PG/11/8/28703 and PG/14/43/30889) and Diabetes UK (14/0004853). NM is funded by British Heart Foundation (PG/16/90/32518).Peer reviewedPublisher PD
Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory
On September 14, 2015 the Advanced LIGO detectors observed their first
gravitational-wave (GW) transient GW150914. This was followed by a second GW
event observed on December 26, 2015. Both events were inferred to have arisen
from the merger of black holes in binary systems. Such a system may emit
neutrinos if there are magnetic fields and disk debris remaining from the
formation of the two black holes. With the surface detector array of the Pierre
Auger Observatory we can search for neutrinos with energy above 100 PeV from
point-like sources across the sky with equatorial declination from about -65
deg. to +60 deg., and in particular from a fraction of the 90% confidence-level
(CL) inferred positions in the sky of GW150914 and GW151226. A targeted search
for highly-inclined extensive air showers, produced either by interactions of
downward-going neutrinos of all flavors in the atmosphere or by the decays of
tau leptons originating from tau-neutrino interactions in the Earth's crust
(Earth-skimming neutrinos), yielded no candidates in the Auger data collected
within s around or 1 day after the coordinated universal time (UTC)
of GW150914 and GW151226, as well as in the same search periods relative to the
UTC time of the GW candidate event LVT151012. From the non-observation we
constrain the amount of energy radiated in ultrahigh-energy neutrinos from such
remarkable events.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival
directions of cosmic rays detected at the Pierre Auger Observatory with local
zenith angles up to and energies in excess of 4 EeV ( eV). This search is conducted by measuring the angular power spectrum
and performing a needlet wavelet analysis in two independent energy ranges.
Both analyses are complementary since the angular power spectrum achieves a
better performance in identifying large-scale patterns while the needlet
wavelet analysis, considering the parameters used in this work, presents a
higher efficiency in detecting smaller-scale anisotropies, potentially
providing directional information on any observed anisotropies. No deviation
from isotropy is observed on any angular scale in the energy range between 4
and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no
other deviation from isotropy is observed for moments beyond the dipole one.
The corresponding -values obtained after accounting for searches blindly
performed at several angular scales, are in the case of
the angular power spectrum, and in the case of the needlet
analysis. While these results are consistent with previous reports making use
of the same data set, they provide extensions of the previous works through the
thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter
An in-situ calibration of a logarithmic periodic dipole antenna with a
frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of
a radio station system used for detection of cosmic ray induced air showers at
the Engineering Radio Array of the Pierre Auger Observatory, the so-called
Auger Engineering Radio Array (AERA). The directional and frequency
characteristics of the broadband antenna are investigated using a remotely
piloted aircraft (RPA) carrying a small transmitting antenna. The antenna
sensitivity is described by the vector effective length relating the measured
voltage with the electric-field components perpendicular to the incoming signal
direction. The horizontal and meridional components are determined with an
overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} %
respectively. The measurement is used to correct a simulated response of the
frequency and directional response of the antenna. In addition, the influence
of the ground conductivity and permittivity on the antenna response is
simulated. Both have a negligible influence given the ground conditions
measured at the detector site. The overall uncertainties of the vector
effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in
the square root of the energy fluence for incoming signal directions with
zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is
unchanged with respect to v2. 39 pages, 15 figures, 2 table
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
A search for point sources of EeV photons
Measurements of air showers made using the hybrid technique developed with
the fluorescence and surface detectors of the Pierre Auger Observatory allow a
sensitive search for point sources of EeV photons anywhere in the exposed sky.
A multivariate analysis reduces the background of hadronic cosmic rays. The
search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an
energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been
detected. An upper limit on the photon flux has been derived for every
direction. The mean value of the energy flux limit that results from this,
assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial
direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in
which EeV cosmic ray protons are emitted by non-transient sources in the
Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical
Journa
Reconstruction of inclined air showers detected with the Pierre Auger Observatory
We describe the method devised to reconstruct inclined cosmic-ray air showers
with zenith angles greater than detected with the surface array of
the Pierre Auger Observatory. The measured signals at the ground level are
fitted to muon density distributions predicted with atmospheric cascade models
to obtain the relative shower size as an overall normalization parameter. The
method is evaluated using simulated showers to test its performance. The energy
of the cosmic rays is calibrated using a sub-sample of events reconstructed
with both the fluorescence and surface array techniques. The reconstruction
method described here provides the basis of complementary analyses including an
independent measurement of the energy spectrum of ultra-high energy cosmic rays
using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of
Cosmology and Astroparticle Physics (JCAP
Exercise management in type 1 diabetes:a consensus statement
Type 1 diabetes is a challenging condition to manage for various physiological and behavioural reasons. Regular exercise is important, but management of different forms of physical activity is particularly difficult for both the individual with type 1 diabetes and the health-care provider. People with type 1 diabetes tend to be at least as inactive as the general population, with a large percentage of individuals not maintaining a healthy body mass nor achieving the minimum amount of moderate to vigorous aerobic activity per week. Regular exercise can improve health and wellbeing, and can help individuals to achieve their target lipid profile, body composition, and fitness and glycaemic goals. However, several additional barriers to exercise can exist for a person with diabetes, including fear of hypoglycaemia, loss of glycaemic control, and inadequate knowledge around exercise management. This Review provides an up-to-date consensus on exercise management for individuals with type 1 diabetes who exercise regularly, including glucose targets for safe and effective exercise, and nutritional and insulin dose adjustments to protect against exercise-related glucose excursions
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
- …
