46 research outputs found

    One health: the importance of companion animal vector-borne diseases

    Get PDF
    The international prominence accorded the 'One Health' concept of co-ordinated activity of those involved in human and animal health is a modern incarnation of a long tradition of comparative medicine, with roots in the ancient civilizations and a golden era during the 19th century explosion of knowledge in the field of infectious disease research. Modern One Health tends to focus on zoonotic pathogens emerging from wildlife and production animal species, but one of the most significant One Health challenges is rabies for which there is a canine reservoir. This review considers the role of small companion animals in One Health and specifically addresses the major vector-borne infectious diseases that are shared by man, dogs and cats. The most significant of these are leishmaniosis, borreliosis, bartonellosis, ehrlichiosis, rickettsiosis and anaplasmosis. The challenges that lie ahead in this field of One Health are discussed, together with the role of the newly formed World Small Animal Veterinary Association One Health Committee

    Analysis of large versus small dogs reveals three genes on the canine X chromosome associated with body weight, muscling and back fat thickness

    Get PDF
    International audienceDomestic dog breeds display significant diversity in both body mass and skeletal size, resulting from intensive selective pressure during the formation and maintenance of modern breeds. While previous studies focused on the identification of alleles that contribute to small skeletal size, little is known about the underlying genetics controlling large size. We first performed a genome-wide association study (GWAS) using the Illumina Canine HD 170,000 single nucleotide polymorphism (SNP) array which compared 165 large-breed dogs from 19 breeds (defined as having a Standard Breed Weight (SBW) >41 kg [90 lb]) to 690 dogs from 69 small breeds (SBW ≤41 kg). We identified two loci on the canine X chromosome that were strongly associated with large body size at 82–84 megabases (Mb) and 101–104 Mb. Analyses of whole genome sequencing (WGS) data from 163 dogs revealed two indels in the Insulin Receptor Substrate 4 (IRS4) gene at 82.2 Mb and two additional mutations, one SNP and one deletion of a single codon, in Immunoglobulin Superfamily member 1 gene (IGSF1) at 102.3 Mb. IRS4 and IGSF1 are members of the GH/IGF1 and thyroid pathways whose roles include determination of body size. We also found one highly associated SNP in the 5’UTR of Acyl-CoA Synthetase Long-chain family member 4 (ACSL4) at 82.9 Mb, a gene which controls the traits of muscling and back fat thickness. We show by analysis of sequencing data from 26 wolves and 959 dogs representing 102 domestic dog breeds that skeletal size and body mass in large dog breeds are strongly associated with variants within IRS4, ACSL4 and IGSF1

    The immunopathology of canine vector-borne diseases

    Get PDF
    The canine vector-borne infectious diseases (CVBDs) are an emerging problem in veterinary medicine and the zoonotic potential of many of these agents is a significant consideration for human health. The successful diagnosis, treatment and prevention of these infections is dependent upon firm understanding of the underlying immunopathology of the diseases in which there are unique tripartite interactions between the microorganism, the vector and the host immune system. Although significant advances have been made in the areas of molecular speciation and the epidemiology of these infections and their vectors, basic knowledge of the pathology and immunology of the diseases has lagged behind. This review summarizes recent studies of the pathology and host immune response in the major CVBDs (leishmaniosis, babesiosis, ehrlichiosis, hepatozoonosis, anaplasmosis, bartonellosis and borreliosis). The ultimate application of such immunological investigation is the development of effective vaccines. The current commercially available vaccines for canine leishmaniosis, babesiosis and borreliosis are reviewed

    A novel canine kidney cell line model for the evaluation of neoplastic development: karyotype evolution associated with spontaneous immortalization and tumorigenicity

    Get PDF
    The molecular mechanisms underlying spontaneous neoplastic transformation in cultured mammalian cells remain poorly understood, confounding recognition of parallels with the biology of naturally occurring cancer. The broad use of tumorigenic canine cell lines as research tools, coupled with the accumulation of cytogenomic data from naturally occurring canine cancers, makes the domestic dog an ideal system in which to investigate these relationships. We developed a canine kidney cell line, CKB1-3T7, which allows prospective examination of the onset of spontaneous immortalization and tumorigenicity. We documented the accumulation of cytogenomic aberrations in CKB1-3T7 over 24 months in continuous culture. The majority of aberrations emerged in parallel with key phenotypic changes in cell morphology, growth kinetics, and tumor incidence and latency. Focal deletion of CDKN2A/B emerged first, preceding the onset and progression of tumorigenic potential, and progressed to a homozygous deletion across the cell population during extended culture. Interestingly, CKB1-3T7 demonstrated a tumorigenic phenotype in vivo prior to exhibiting loss of contact inhibition in vitro. We also performed the first genome-wide characterization of the canine tumorigenic cell line MDCK, which also exhibited CDKN2A/B deletion. MDCK and CKB1-3T7 cells shared several additional aberrations that we have reported previously as being highly recurrent in spontaneous canine cancers, many of which, as with CDKN2A/B deletion, are evolutionarily conserved in their human counterparts. The conservation of these molecular events across multiple species, in vitro and in vivo, despite their contrasting karyotypic architecture, is a powerful indicator of a common mechanism underlying emerging neoplastic activity. Through integrated cytogenomic and phenotypic characterization of serial passages of CKB1-3T7 from initiation to development of a tumorigenic phenotype, we present a robust and readily accessible model (to be made available through the American Type Culture Collection) of spontaneous neoplastic transformation that overcomes many of the limitations of earlier studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10577-015-9474-8) contains supplementary material, which is available to authorized users

    A novel canine histiocytic sarcoma cell line:initial characterization and utilization for drug screening studies

    Get PDF
    Abstract Background Histiocytic sarcoma is a rare disorder in humans, however it is seen with appreciable frequency in certain breeds of dogs, such as Bernese mountain dog. The purpose of this study was to fully characterize a novel canine histiocytic sarcoma cell line, and utilize it as a tool to screen for potential therapeutic drugs. Methods The histiocytic sarcoma cell line was characterized by expression of cellular markers as determined by immunohistochemistry and flow cytometry techniques. The neoplastic cells were also evaluated for their capability of phagocytizing beads particles, and their potential to grow as xenograft in an immunodeficient mouse. We investigated the in vitro cytotoxic activity of a panel of thirteen compounds using the MTS proliferation assay. Inhibitory effects of different drugs were compared using one-way ANOVA, and multiple means were compared using Tukey’s test. Results Neoplastic cells expressed CD11c, CD14, CD18, CD45, CD172a, CD204, MHC I, and vimentin. Expression of MHC II was upregulated after exposure to LPS. Furthermore, the established cell line clearly demonstrated phagocytic activity similar to positive controls of macrophage cell line. The xenograft mouse developed a palpable subcutaneous soft tissue mass after 29 days of inoculation, which histologically resembled the primary neoplasm. Dasatinib, a tyrosine kinase pan-inhibitor, significantly inhibited the growth of the cells in vitro within a clinically achievable and tolerable plasma concentration. The inhibitory response to dasatinib was augmented when combined with doxorubicin. Conclusions In the present study we demonstrated that a novel canine histiocytic sarcoma cell line presents a valuable tool to evaluate novel treatment approaches. The neoplastic cell line favorably responded to dasatinib, which represents a promising anticancer strategy for the treatment of this malignancy in dogs and similar disorders in humans
    corecore