2,988 research outputs found
An alternative to the Allen-Cahn phase field model for interfaces in solids - numerical efficiency
The derivation of the Allen-Cahn and Cahn-Hilliard equations is based on the
Clausius-Duhem inequality. This is not a derivation in the strict sense of the
word, since other phase field equations can be fomulated satisfying this
inequality. Motivated by the form of sharp interface problems, we formulate
such an alternative equation and compare the properties of the models for the
evolution of phase interfaces in solids, which consist of the elasticity
equations and the Allen-Cahn equation or the alternative equation. We find that
numerical simulations of phase interfaces with small interface energy based on
the alternative model are more effective then simulations based on the
Allen-Cahn model.Comment: arXiv admin note: text overlap with arXiv:1505.0544
Robustness of the BB84 quantum key distribution protocol against general coherent attacks
It is demonstrated that for the entanglement-based version of the
Bennett-Brassard (BB84) quantum key distribution protocol, Alice and Bob share
provable entanglement if and only if the estimated qubit error rate is below
25% or above 75%. In view of the intimate relation between entanglement and
security, this result sheds also new light on the unconditional security of the
BB84 protocol in its original prepare-and-measure form. In particular, it
indicates that for small qubit error rates 25% is the ultimate upper security
bound for any prepare-and-measure BB84-type QKD protocol. On the contrary, for
qubit error rates between 25% and 75% we demonstrate that the correlations
shared between Alice and Bob can always be explained by separable states and
thus, no secret key can be distilled in this regime.Comment: New improved version. A minor mistake has been eliminate
Geometric analysis of optical frequency conversion and its control in quadratic nonlinear media
We analyze frequency conversion and its control among three light waves using a geometric approach that enables the dynamics of the waves to be visualized on a closed surface in three dimensions. It extends the analysis based on the undepleted-pump linearization and provides a simple way to understand the fully nonlinear dynamics. The Poincaré sphere has been used in the same way to visualize polarization dynamics. A geometric understanding of control strategies that enhance energy transfer among interacting waves is introduced, and the quasi-phase-matching strategy that uses microstructured quadratic materials is illustrated in this setting for both type I and II second-harmonic generation and for parametric three-wave interactions
Resonant Geometric Phases for Soliton Equations
The goal of the present paper is to introduce a multidimensional generalization of asymptotic reduction given in a paper by Alber and Marsden [1992], to use this to obtain a new class of solutions that we call resonant solitons, and to study the corresponding geometric phases. The term "resonant solitons" is used because those solutions correspond to a spectrum with multiple points, and they also represent a dividing solution between two different types of solitons. In this sense, these new solutions are degenerate and, as such, will be considered as singular points in the moduli space of solitons
On Soliton-type Solutions of Equations Associated with N-component Systems
The algebraic geometric approach to -component systems of nonlinear
integrable PDE's is used to obtain and analyze explicit solutions of the
coupled KdV and Dym equations. Detailed analysis of soliton fission, kink to
anti-kink transitions and multi-peaked soliton solutions is carried out.
Transformations are used to connect these solutions to several other equations
that model physical phenomena in fluid dynamics and nonlinear optics.Comment: 43 pages, 16 figure
Development of a Coding Instrument to Assess the Quality and Content of Anti-Tobacco Video Games
Previous research has shown the use of electronic video games as an effective method for increasing content knowledge about the risks of drugs and alcohol use for adolescents. Although best practice suggests that theory, health communication strategies, and game appeal are important characteristics for developing games, no instruments are currently available to examine the quality and content of tobacco prevention and cessation electronic games. This study presents the systematic development of a coding instrument to measure the quality, use of theory, and health communication strategies of tobacco cessation and prevention electronic games. Using previous research and expert review, a content analysis coding instrument measuring 67 characteristics was developed with three overarching categories: type and quality of games, theory and approach, and type and format of messages. Two trained coders applied the instrument to 88 games on four platforms (personal computer, Nintendo DS, iPhone, and Android phone) to field test the instrument. Cohen's kappa for each item ranged from 0.66 to 1.00, with an average kappa value of 0.97. Future research can adapt this coding instrument to games addressing other health issues. In addition, the instrument questions can serve as a useful guide for evidence-based game development.Food and Drug Administration (FDA) Center for Tobacco ProductsNational Cancer Institute (NCI) Office of Communication and EducationCommunication Studie
- …
