582 research outputs found
Ovarian cycling and reproductive state shape the vaginal microbiota in wild baboons
Background: The vaginal microbiome is an important site of bacterial-mammalian symbiosis. This symbiosis is currently best characterized for humans, where lactobacilli dominate the microbial community and may help defend women against infectious disease. However, lactobacilli do not dominate the vaginal microbiota of any other mammal studied to date, raising key questions about the forces that shape the vaginal microbiome in non-human mammals.
Results: We used Illumina sequencing of the bacterial 16S rRNA gene to investigate variation in the taxonomic composition of the vaginal microbiota in 48 baboons (Papio cynocephalus), members of a well-studied wild population in Kenya. Similar to prior studies, we found that the baboon vaginal microbiota was not dominated by lactobacilli. Despite this difference, and similar to humans, reproductive state was the dominant predictor of baboon vaginal microbiota, with pregnancy, postpartum amenorrhea, and ovarian cycling explaining 18% of the variance in community composition. Furthermore, among cycling females, a striking 39% of variance in community composition was explained by ovarian cycle phase, with an especially distinctive microbial community around ovulation. Peri-ovulatory females exhibited the highest relative abundance of lactic acid-producing bacteria compared to any other phase, with a mean relative abundance of 44%. To a lesser extent, sexual behavior, especially a history of shared sexual partners, also predicted vaginal microbial similarity between baboons.
Conclusions: Despite striking differences in their dominant microbes, both human and baboon vaginal microbiota exhibit profound changes in composition in response to reproductive state, ovarian cycle phase, and sexual behavior. We found major shifts in composition during ovulation, which may have implications for disease risk and conception success. These findings highlight the need for future studies to account for fine-scale differences in reproductive state, particularly differences between the various phases of the ovarian cycle. Overall, our work contributes to an emerging understanding of the forces that explain intra- and inter-individual variation in the mammalian vaginal microbiome, with particular emphasis on its role in host health and disease risk
Pheromone-mediated behavior of a greenhouse fungus gnat, Bradysia impatiens (Johannsen) (Diptera: Sciaridae)
Thesis (M.S.)--Michigan State University. Department of Entomology, 1978Includes bibliographical references (pages 39-41
Social bonds, social status and survival in wild baboons:a tale of two sexes
People who are more socially integrated or have higher socio-economic status live longer. Recent studies in non-human primates show striking convergences with this human pattern: female primates with more social partners, stronger social bonds or higher dominance rank all lead longer lives. However, it remains unclear whether social environments also predict survival in male non-human primates, as it does in men. This gap persists because, in most primates, males disperse among social groups, resulting in many males who disappear with unknown fate and have unknown dates of birth. We present a Bayesian model to estimate the effects of time-varying social covariates on age-specific adult mortality in both sexes of wild baboons. We compare how the survival trajectories of both sexes are linked to social bonds and social status over the life. We find that, parallel to females, male baboons who are more strongly bonded to females have longer lifespans. However, males with higher dominance rank for their age appear to have shorter lifespans. This finding brings new understanding to the adaptive significance of heterosexual social bonds for male baboons: in addition to protecting the male's offspring from infanticide, these bonds may have direct benefits to males themselves. This article is part of the theme issue 'Evolution of the primate ageing process'.</p
Genetic variance and indirect genetic effects for affiliative social behavior in a wild primate
Affiliative social behaviors are linked to fitness components in multiple species. However, the role of genetic variance in shaping such behaviors remains largely unknown, limiting our understanding of how affiliative behaviors can respond to natural selection. Here, we employed the ‘animal model’ to estimate environmental and genetic sources of variance and covariance in grooming behavior in the well-studied Amboseli wild baboon population. We found that the tendency for a female baboon to groom others (‘grooming given’) is heritable (h2=0.22± 0.048), and that several environmental variables – including dominance rank and the availability of kin as grooming partners – contribute to variance in this grooming behavior. We also detected small but measurable variance due to the indirect genetic effect of partner identity on the amount of grooming given within dyadic grooming partnerships. The indirect and direct genetic effects for grooming given were positively correlated (r=0.74± 0.09). Our results provide insight into the evolvability of affiliative behavior in wild animals, including the possibility for correlations between direct and indirect genetic effects to accelerate the response to selection. As such they provide novel information about the genetic architecture of social behavior in nature, with important implications for the evolution of cooperation and reciprocity
Age and individual foraging behavior predict tooth wear in Amboseli baboons
Teeth represent an essential component of the foraging apparatus for any mammal, and tooth wear can have significant implications for survival and reproduction. This study focuses on tooth wear in wild baboons in Amboseli, southern Kenya. We obtained mandibular and maxillary tooth impressions from 95 baboons and analyzed digital images of replicas made from these impressions. We measured tooth wear as the percent dentine exposure (PDE, the percent of the occlusal surface on which dentine was exposed), and we examined the relationship of PDE to age, behavior, and life history variables. We found that PDE increased significantly with age for both sexes in all three molar types. In females, we also tested the hypotheses that long-term patterns of feeding behavior, social dominance rank, and one measure of maternal investment (the cumulative number of months that a female had dependent infants during her lifetime) would predict tooth wear when we controlled for age. The hypothesis that feeding behavior predicted tooth wear was supported. The percent of feeding time spent consuming grass corms predicted PDE when controlling for age. However, PDE was not associated with social dominance rank or maternal investment
Recommended from our members
Adding a treatment arm to an ongoing clinical trial: a review of methodology and practice
Incorporating an emerging therapy as a new randomisation arm in a clinical trial that is open to recruitment would be desirable to researchers, regulators and patients to ensure that the trial remains current, new treatments are evaluated as quickly as possible, and the time and cost for determining optimal therapies is minimised. It may take many years to run a clinical trial from concept to reporting within a rapidly changing drug development environment; hence, in order for trials to be most useful to inform policy and practice, it is advantageous for them to be able to adapt to emerging therapeutic developments. This paper reports a comprehensive literature review on methodologies for, and practical examples of, amending an ongoing clinical trial by adding a new treatment arm. Relevant methodological literature describing statistical considerations required when making this specific type of amendment is identified, and the key statistical concepts when planning the addition of a new treatment arm are extracted, assessed and summarised. For completeness, this includes an assessment of statistical recommendations within general adaptive design guidance documents. Examples of confirmatory ongoing trials designed within the frequentist framework that have added an arm in practice are reported; and the details of the amendment are reviewed. An assessment is made as to how well the relevant statistical considerations were addressed in practice, and the related implications. The literature review confirmed that there is currently no clear methodological guidance on this topic, but that guidance would be advantageous to help this efficient design amendment to be used more frequently and appropriately in practice. Eight confirmatory trials were identified to have added a treatment arm, suggesting that trials can benefit from this amendment and that it can be practically feasible; however, the trials were not always able to address the key statistical considerations, often leading to uninterpretable or invalid outcomes. If the statistical concepts identified within this review are considered and addressed during the design of a trial amendment, it is possible to effectively assess a new treatment arm within an ongoing trial without compromising the original trial outcomes
GENETIC EFFECTIVE SIZE OF A WILD PRIMATE POPULATION: INFLUENCE OF CURRENT AND HISTORICAL DEMOGRAPHY
- …
