38,005 research outputs found

    A C++11 implementation of arbitrary-rank tensors for high-performance computing

    Full text link
    This article discusses an efficient implementation of tensors of arbitrary rank by using some of the idioms introduced by the recently published C++ ISO Standard (C++11). With the aims at providing a basic building block for high-performance computing, a single Array class template is carefully crafted, from which vectors, matrices, and even higher-order tensors can be created. An expression template facility is also built around the array class template to provide convenient mathematical syntax. As a result, by using templates, an extra high-level layer is added to the C++ language when dealing with algebraic objects and their operations, without compromising performance. The implementation is tested running on both CPU and GPU.Comment: 21 pages, 6 figures, 1 tabl

    An Elementary Treatment of the Reverse Sprinkler

    Full text link
    We discuss the reverse sprinkler problem: How does a sprinkler turn when submerged and made to suck in water? We propose a solution that requires only a knowledge of mechanics and fluid dynamics at the introductory university level. We argue that as the flow of water starts, the sprinkler briefly experiences a torque that would make it turn toward the incoming water, while as the flow of water ceases it briefly experiences a torque in the opposite direction. No torque is expected when water is flowing steadily into it unless dissipative effects, such as viscosity, are considered. Dissipative effects result in a small torque that would cause the sprinkler arm to accelerate toward the steadily incoming water. Our conclusions are discussed in light of an analysis of forces, conservation of angular momentum, and the experimental results reported by others. We review the conflicting published treatments of this problem, some of which have been incorrect and many of which have introduced complications that obscure the basic physics involved.Comment: 16 pages, 8 figures. The subject of this paper is often referred to in the literature as the "Feynman sprinkler" or the "Feynman inverse sprinkler." v2:references added, discussion of angular momentum conservation clarified, section III expanded to include consideration of dissipative phenomena such as viscosity. v3:minor corrections of style. To appear in the American Journal of Physic

    Aztec obsidian industries

    Full text link
    Obsidian was the primary lithic or stone material used for cutting activities in Aztec society, including domestic food production, craft production, hunting, warfare, and ritual. The demands of millions of consumers within and outside of the Aztec Empire shaped a diversity of industries and distribution networks that operated through merchants, markets, and state taxes in goods and labor. This chapter provides an overview of the primary obsidian sources, quarry activities, artifact types, use contexts, and innovations in lithic technology during the Aztec (Middle and Late Postclassic) period. A particular focus is the Sierra de Las Navajas (or Pachuca) mine and the detailed history of quarrying and manufacturing activities that have been documented there

    Haldane phase in one-dimensional topological Kondo insulators

    Get PDF
    We investigate the groundstate properties of a recently proposed model for a topological Kondo insulator in one dimension (i.e., the pp-wave Kondo-Heisenberg lattice model) by means of the Density Matrix Renormalization Group method. The non-standard Kondo interaction in this model is different from the usual (i.e., local) Kondo interaction in that the localized spins couple to the "pp-wave" spin density of conduction electrons, inducing a topologically non-trivial insulating groundstate. Based on the analysis of the charge- and spin-excitation gaps, the string order parameter, and the spin profile in the groundstate, we show that, at half-filling and low energies, the system is in the Haldane phase and hosts topologically protected spin-1/2 end-states. Beyond its intrinsic interest as a useful "toy-model" to understand the effects of strong correlations on topological insulators, we show that the pp-wave Kondo-Heisenberg model can be implemented in pp-band optical lattices loaded with ultra-cold Fermi gases.Comment: 8 pages, 4 figures, 1 appendi

    Tunneling transport in NSN junctions made of Majorana nanowires across the topological quantum phase transition

    Get PDF
    We theoretically consider transport properties of a normal metal (N)- superconducting semiconductor nanowire (S)-normal metal (N) structure (NSN) in the context of the possible existence of Majorana bound states in disordered semiconductor-superconductor hybrid systems in the presence of spin-orbit coupling and Zeeman splitting induced by an external magnetic field. We study in details the transport signatures of the topological quantum phase transition as well as the existence of the Majorana bound states in the electrical transport properties of the NSN structure. Our theory includes the realistic nonperturbative effects of disorder, which is detrimental to the topological phase (eventually suppressing the superconducting gap completely), and the effects of the tunneling barriers (or the transparency at the tunneling NS contacts), which affect (and suppress) the zero bias conductance peak associated with the zero energy Majorana bound states. We show that in the presence of generic disorder and barrier transparency the interpretation of the zero bias peak as being associated with the Majorana bound state is problematic since the nonlocal correlations between the two NS contacts at two ends may not manifest themselves in the tunneling conductance through the whole NSN structure. We establish that a simple modification of the standard transport measurements using conductance differences (rather than the conductance itself as in a single NS junction) as the measured quantity can allow direct observation of the nonlocal correlations inherent in the Majorana bound states and enables the mapping out of the topological phase diagram (even in the presence of considerable disorder) by precisely detecting the topological quantum phase transition point.Comment: 34 pages, 7 figures, 1 table. New version with minor modifications and more physical discussion

    Secular models and Kozai resonance for planets in coorbital non-coplanar motion

    Get PDF
    In this work, we construct and test an analytical and a semianalytical secular models for two planets locked in a coorbital non-coplanar motion, comparing some results with the case of restricted three body problem. The analytical average model replicates the numerical N-body integrations, even for moderate eccentricities (\lesssim 0.3) and inclinations (10\lesssim10^\circ), except for the regions corresponding to quasi-satellite and Lidov-Kozai configurations. Furthermore, this model is also useful in the restricted three body problem, assuming very low mass ratio between the planets. We also describe a four-degree-of-freedom semianalytical model valid for any type of coorbital configuration in a wide range of eccentricities and inclinations. {Using a N-body integrator, we have found that the phase space of the General Three Body Problem is different to the restricted case for inclined systems, and establish the location of the Lidov-Kozai equilibrium configurations depending on mass ratio. We study the stability of periodic orbits in the inclined systems, and find that apart from the robust configurations L4L_4, AL4AL_4, and QSQS is possible to harbour two Earth-like planets in orbits previously identified as unstable UU and also in Euler L3L_3 configurations, with bounded chaos.Comment: 15 pages. 20 figure
    corecore