31 research outputs found

    Spin Physics at e^+e^- Colliders

    Get PDF
    A large number of measurements with polarized beams and/or spin analysis of final state particles has been performed at the e^+e^- colliders LEP and SLC, providing important information on the dynamics of high energy interactions. In this paper three subjects, for which the role of spin studies was particularly relevant, will be covered: the measurements of the electroweak couplings, the study of fragmentation dynamics and the search for physics beyond the Standard Model.Comment: 11 pages, Invited talk given at the International Workshop on Symmetry and Spin - Prague, Czech Republic, August 30 - September 5, 199

    Tests of the Standard Model: W mass and WWZ Couplings

    Get PDF
    Recent tests of the electroweak Standard Model are reviewed, covering the precise measurements of Z decays at LEP I and SLC and measurements of fermion pair production at higher energies at LEP II. Special emphasis is given to new results on W physics from LEP and FNAL

    Signals of Z' boson in the Bhabha process within the LEP2 data set

    Full text link
    The LEP2 data set on the Bhabha process is analyzed with the aim to detect the signals of the heavy virtual Z' gauge bosons. The state interacting with the left-handed standard-model doublets and called the Chiral Z' is investigated. This particle was introduced already as the low-energy state allowed by the renormalizability of the model. The contribution of the Chiral Z' state to the Bhabha process is described by two parameters: the coupling to electrons and the Z-Z' mixing angle. The sign-definite one-parameter observable is proposed to measure the Z' coupling to the electron current. The one-parameter fit of the data shows no signals of the particle. The alternative two-parameter fit of the differential cross-sections is also performed. It also shows no Chiral Z' signals. The comparisons with other fits are discussed.Comment: 15 pages, 4 figures. The paper was completely rewritten on the base of new dat

    Supersymmetry and LHC

    Get PDF
    The motivation for introduction of supersymmetry in high energy physics as well as a possibility for supersymmetry discovery at LHC (Large Hadronic Collider) are discussed. The main notions of the Minimal Supersymmetric Standard Model (MSSM) are introduced. Different regions of parameter space are analyzed and their phenomenological properties are compared. Discovery potential of LHC for the planned luminosity is shown for different channels. The properties of SUSY Higgs bosons are studied and perspectives of their observation at LHC are briefly outlined.Comment: Lectures given at the 9th Moscow International School of Physics (XXXIV ITEP Winter School of Physics

    Unanswered Questions in the Electroweak Theory

    Full text link
    This article is devoted to the status of the electroweak theory on the eve of experimentation at CERN's Large Hadron Collider. A compact summary of the logic and structure of the electroweak theory precedes an examination of what experimental tests have established so far. The outstanding unconfirmed prediction of the electroweak theory is the existence of the Higgs boson, a weakly interacting spin-zero particle that is the agent of electroweak symmetry breaking, the giver of mass to the weak gauge bosons, the quarks, and the leptons. General arguments imply that the Higgs boson or other new physics is required on the TeV energy scale. Indirect constraints from global analyses of electroweak measurements suggest that the mass of the standard-model Higgs boson is less than 200 GeV. Once its mass is assumed, the properties of the Higgs boson follow from the electroweak theory, and these inform the search for the Higgs boson. Alternative mechanisms for electroweak symmetry breaking are reviewed, and the importance of electroweak symmetry breaking is illuminated by considering a world without a specific mechanism to hide the electroweak symmetry. For all its triumphs, the electroweak theory has many shortcomings. . . .Comment: 31 pages, 20 figures; prepared for Annual Review of Nuclear and Particle Science (minor changes

    Contribution of higher meson resonances to the electromagnetic π\pi-meson mass difference

    Get PDF
    Modifications of the DGMLY relation for calculation of electromagnetic π\pi-meson mass difference based on the Chiral Symmetry Restoration phenomenon at high energies as well as the Operator Product Expansion of quark densities for vector (ρ\rho) and axial-vector (a1a_1) meson fields difference are proposed. In the calculations higher meson resonances in vector and axial-vector channels are taken into account. It is shown that the inclusion of the first ρ\rho and a1a_1 radial excitations improves the results for electromagnetic π\pi-meson mass difference as compared with the previous ones. Estimations on the electromagnetic ρ\rho and a1a_1-meson decay constants and the constant L10L_{10} of effective chiral Lagrangian are obtained from the generalized Weinberg sum rules.Comment: Latex2e, 10 pages, submitted to Yad. Phy

    Stop-mass prediction in naturalness scenarios within MSSM-25

    No full text
    corecore