3,979 research outputs found
A Dimension-Adaptive Multi-Index Monte Carlo Method Applied to a Model of a Heat Exchanger
We present an adaptive version of the Multi-Index Monte Carlo method,
introduced by Haji-Ali, Nobile and Tempone (2016), for simulating PDEs with
coefficients that are random fields. A classical technique for sampling from
these random fields is the Karhunen-Lo\`eve expansion. Our adaptive algorithm
is based on the adaptive algorithm used in sparse grid cubature as introduced
by Gerstner and Griebel (2003), and automatically chooses the number of terms
needed in this expansion, as well as the required spatial discretizations of
the PDE model. We apply the method to a simplified model of a heat exchanger
with random insulator material, where the stochastic characteristics are
modeled as a lognormal random field, and we show consistent computational
savings
Higgs for Graviton: Simple and Elegant Solution
A Higgs mechanism for gravity is presented, where four scalars with global
Lorentz symmetry are employed. We show that in the broken symmetry phase a
graviton absorbs all scalars and become massive spin 2 particle with five
degrees of freedom. The resulting theory is unitary and free of ghosts.Comment: 8 pages, References added. The decoupling of ghost state is analyzed
in detail
Smolyak's algorithm: A powerful black box for the acceleration of scientific computations
We provide a general discussion of Smolyak's algorithm for the acceleration
of scientific computations. The algorithm first appeared in Smolyak's work on
multidimensional integration and interpolation. Since then, it has been
generalized in multiple directions and has been associated with the keywords:
sparse grids, hyperbolic cross approximation, combination technique, and
multilevel methods. Variants of Smolyak's algorithm have been employed in the
computation of high-dimensional integrals in finance, chemistry, and physics,
in the numerical solution of partial and stochastic differential equations, and
in uncertainty quantification. Motivated by this broad and ever-increasing
range of applications, we describe a general framework that summarizes
fundamental results and assumptions in a concise application-independent
manner
Prevalence and Correlates of Common Mental Disorders among Mothers of Young Children in Kilimanjaro Region of Tanzania.
Although poor maternal mental health is a major public health problem, with detrimental effects on the individual, her children and society, information on its correlates in low-income countries is sparse. This study investigates the prevalence of common mental disorders (CMD) among at-risk mothers, and explores its associations with sociodemographic factors. This population-based survey of mothers of children aged 0-36 months used the 14-item Shona Symptom Questionnaire (SSQ). Mothers whose response was "yes" to 8 or more items on the scale were defined as "at risk of CMD." Of the 1,922 mothers (15-48 years), 28.8% were at risk of CMD. Risk of CMD was associated with verbal abuse, physical abuse, a partner who did not help with the care of the child, being in a polygamous relationship, a partner with low levels of education, and a partner who smoked cigarettes. Cohabiting appeared to be protective. Taken together, our results indicate the significance of the quality of relations with one's partner in shaping maternal mental health. The high proportion of mothers who are at risk of CMD emphasizes the importance of developing evidence-based mental health programmes as part of the care package aimed at improving maternal well-being in Tanzania and other similar settings
Corporate Social Responsibility and Islamic Financial Institutions (IFIs): Management Perceptions from IFIs in Bahrain
Islamic finance is gaining greater attention in the finance industry, and this paper analyses how Islamic financial institutions (IFIs) are responding to the welfare needs of society. Using interview data with managers and content analysis of the disclosures, this study attempts to understand management perceptions of corporate social
responsibility (CSR) in IFIs. A thorough understanding of CSR by managers, as evident in the interviews, has not been translated fully into practice. The partial use of IFIs’ potential role in social welfare would add further challenges in the era of financialisation
Essential and checkpoint functions of budding yeast ATM and ATR during meiotic prophase are facilitated by differential phosphorylation of a meiotic adaptor protein, Hop1
A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis. Phosphorylation at the serine 298 (S298) promotes stable Hop1-Mek1 interaction on chromosomes following the initial phospho-T318 mediated Mek1 recruitment. In the absence of Dmc1, the phospho-S298 also promotes Mek1 hyper-activation necessary for implementing meiotic checkpoint arrest. Taking these observations together, we propose that the Hop1 phospho-T318 and phospho-S298 constitute key components of the Tel1/Mec1- based meiotic recombination surveillance (MRS) network and facilitate effective coupling of meiotic recombination and progression during both unperturbed and challenged meiosis
3-D Printed Radar Absorber with Meta-material Features for X-band Application
This paper presents a structured radar absorber with metamaterial features based on graphite SLS composite. The unit cell of the proposed design was simulated on COMSOL Multiphysics to determine its frequencydependent absorption characteristics and fabricated using low-cost selective laser sintering 3-D printing technology. The measurement and simulation results showed an effective absorption bandwidth of 1.04 GHz and 2.08 GHz respectively. The optimized structure however, revealed broadband absorption in a frequency range between 8.35 to 12.20 GHz (X band) under normal incidence. Besides, the absorption performance under different polarizations and incident angles were investigated. Results indicated that the absorber exhibits polarization indifference and high absorptivity at a wide angle of incidence. The advantages of low cost, ultra-broad operating band, wide-angle feature, and polarization insensitivity made the proposed absorber a promising candidate in military and civilian applications
A database of microRNA expression patterns in Xenopus laevis
MicroRNAs (miRNAs) are short, non-coding RNAs around 22 nucleotides long. They inhibit gene expression either by translational repression or by causing the degradation of the mRNAs they bind to. Many are highly conserved amongst diverse organisms and have restricted spatio-temporal expression patterns during embryonic development where they are thought to be involved in generating accuracy of developmental timing and in supporting cell fate decisions and tissue identity. We determined the expression patterns of 180 miRNAs in Xenopus laevis embryos using LNA oligonucleotides. In addition we carried out small RNA-seq on different stages of early Xenopus development, identified 44 miRNAs belonging to 29 new families and characterized the expression of 5 of these. Our analyses identified miRNA expression in many organs of the developing embryo. In particular a large number were expressed in neural tissue and in the somites. Surprisingly none of the miRNAs we have looked at show expression in the heart. Our results have been made freely available as a resource in both XenMARK and Xenbase
Heavy fermions and two loop electroweak corrections to
Applying effective Lagrangian method and on-shell scheme, we analyze the
electroweak corrections to the rare decay from some
special two loop diagrams in which a closed heavy fermion loop is attached to
the virtual charged gauge bosons or Higgs. At the decoupling limit where the
virtual fermions in inner loop are much heavier than the electroweak scale, we
verify the final results satisfying the decoupling theorem explicitly when the
interactions among Higgs and heavy fermions do not contain the nondecoupling
couplings. Adopting the universal assumptions on the relevant couplings and
mass spectrum of new physics, we find that the relative corrections from those
two loop diagrams to the SM theoretical prediction on the branching ratio of
can reach 5% as the energy scale of new physics
GeV.Comment: 30 pages,4 figure
Entanglement distribution and quantum discord
Establishing entanglement between distant parties is one of the most
important problems of quantum technology, since long-distance entanglement is
an essential part of such fundamental tasks as quantum cryptography or quantum
teleportation. In this lecture we review basic properties of entanglement and
quantum discord, and discuss recent results on entanglement distribution and
the role of quantum discord therein. We also review entanglement distribution
with separable states, and discuss important problems which still remain open.
One such open problem is a possible advantage of indirect entanglement
distribution, when compared to direct distribution protocols.Comment: 7 pages, 2 figures, contribution to "Lectures on general quantum
correlations and their applications", edited by Felipe Fanchini, Diogo
Soares-Pinto, and Gerardo Adess
- …
