5,680 research outputs found
On domain walls in a Ginzburg-Landau non-linear S^2-sigma model
The domain wall solutions of a Ginzburg-Landau non-linear -sigma hybrid
model are unveiled. There are three types of basic topological walls and two
types of degenerate families of composite - one topological, the other
non-topological- walls. The domain wall solutions are identified as the finite
action trajectories (in infinite time) of a related mechanical system that is
Hamilton-Jacobi separable in sphero-conical coordinates. The physical and
mathematical features of these domain walls are thoroughly discussed.Comment: 26 pages, 18 figure
Harmonic analysis on the Möbius gyrogroup
In this paper we propose to develop harmonic analysis on the Poincaré ball , a model of the n-dimensional real hyperbolic space. The Poincaré ball is the open ball of the Euclidean n-space with radius , centered at the origin of and equipped with Möbius addition, thus forming a Möbius gyrogroup where Möbius addition in the ball plays the role of vector addition in . For any and an arbitrary parameter we study the -translation, the -convolution, the eigenfunctions of the -Laplace-Beltrami operator, the -Helgason Fourier transform, its inverse transform and the associated Plancherel's Theorem, which represent counterparts of standard tools, thus, enabling an effective theory of hyperbolic harmonic analysis. Moreover, when the resulting hyperbolic harmonic analysis on tends to the standard Euclidean harmonic analysis on , thus unifying hyperbolic and Euclidean harmonic analysis. As an application we construct diffusive wavelets on
Recommended from our members
Measurement of W± boson production in Pb+Pb collisions at √sNN=5.02Te with the ATLAS detector
A measurement of W± boson production in Pb+Pb collisions at sNN=5.02Te is reported using data recorded by the ATLAS experiment at the LHC in 2015, corresponding to a total integrated luminosity of 0.49nb-1. The W± bosons are reconstructed in the electron or muon leptonic decay channels. Production yields of leptonically decaying W± bosons, normalised by the total number of minimum-bias events and the nuclear thickness function, are measured within a fiducial region defined by the detector acceptance and the main kinematic requirements. These normalised yields are measured separately for W+ and W- bosons, and are presented as a function of the absolute value of pseudorapidity of the charged lepton and of the collision centrality. The lepton charge asymmetry is also measured as a function of the absolute value of lepton pseudorapidity. In addition, nuclear modification factors are calculated using the W± boson production cross-sections measured in pp collisions. The results are compared with predictions based on next-to-leading-order calculations with CT14 parton distribution functions as well as with predictions obtained with the EPPS16 and nCTEQ15 nuclear parton distribution functions. No dependence of normalised production yields on centrality and a good agreement with predictions are observed for mid-central and central collisions. For peripheral collisions, the data agree with predictions within 1.7 (0.9) standard deviations for W- (W+) bosons
Experience and Challenges from Clinical Trials with Malaria Vaccines in Africa.
Malaria vaccines are considered amongst the most important modalities for potential elimination of malaria disease and transmission. Research and development in this field has been an area of intense effort by many groups over the last few decades. Despite this, there is currently no licensed malaria vaccine. Researchers, clinical trialists and vaccine developers have been working on many approached to make malaria vaccine available.African research institutions have developed and demonstrated a great capacity to undertake clinical trials in accordance to the International Conference on Harmonization-Good Clinical Practice (ICH-GCP) standards in the last decade; particularly in the field of malaria vaccines and anti-malarial drugs. This capacity is a result of networking among African scientists in collaboration with other partners; this has traversed both clinical trials and malaria control programmes as part of the Global Malaria Action Plan (GMAP). GMAP outlined and support global strategies toward the elimination and eradication of malaria in many areas, translating in reduction in public health burden, especially for African children. In the sub-Saharan region the capacity to undertake more clinical trials remains small in comparison to the actual need.However, sustainability of the already developed capacity is essential and crucial for the evaluation of different interventions and diagnostic tools/strategies for other diseases like TB, HIV, neglected tropical diseases and non-communicable diseases. There is urgent need for innovative mechanisms for the sustainability and expansion of the capacity in clinical trials in sub-Saharan Africa as the catalyst for health improvement and maintained
Thermodynamic analysis of black hole solutions in gravitating nonlinear electrodynamics
We perform a general study of the thermodynamic properties of static
electrically charged black hole solutions of nonlinear electrodynamics
minimally coupled to gravitation in three space dimensions. The Lagrangian
densities governing the dynamics of these models in flat space are defined as
arbitrary functions of the gauge field invariants, constrained by some
requirements for physical admissibility. The exhaustive classification of these
theories in flat space, in terms of the behaviour of the Lagrangian densities
in vacuum and on the boundary of their domain of definition, defines twelve
families of admissible models. When these models are coupled to gravity, the
flat space classification leads to a complete characterization of the
associated sets of gravitating electrostatic spherically symmetric solutions by
their central and asymptotic behaviours. We focus on nine of these families,
which support asymptotically Schwarzschild-like black hole configurations, for
which the thermodynamic analysis is possible and pertinent. In this way, the
thermodynamic laws are extended to the sets of black hole solutions of these
families, for which the generic behaviours of the relevant state variables are
classified and thoroughly analyzed in terms of the aforementioned boundary
properties of the Lagrangians. Moreover, we find universal scaling laws (which
hold and are the same for all the black hole solutions of models belonging to
any of the nine families) running the thermodynamic variables with the electric
charge and the horizon radius. These scale transformations form a one-parameter
multiplicative group, leading to universal "renormalization group"-like
first-order differential equations. The beams of characteristics of these
equations generate the full set of black hole states associated to any of these
gravitating nonlinear electrodynamics...Comment: 51 single column pages, 19 postscript figures, 2 tables, GRG tex
style; minor corrections added; final version appearing in General Relativity
and Gravitatio
Recommended from our members
Combination of searches for Higgs boson pairs in pp collisions at s=13TeV with the ATLAS detector
This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb−1 of proton–proton collision data at a centre-of-mass energy s=13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the bb¯bb¯, bb¯W+W−, bb¯τ+τ−, W+W−W+W−, bb¯γγ and W+W−γγ final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (κλ) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to −5.0<κλ<12.0 (−5.8<κλ<12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza–Klein Randall–Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model
Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb−1 of pp collisions at s=13TeV with the ATLAS experiment
A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5)
Recommended from our members
Measurement of the Z(→ ℓ + ℓ −)γ production cross-section in pp collisions at √s = 13 TeV with the ATLAS detector
The production of a prompt photon in association with a Z boson is studied in proton-proton collisions at a centre-of-mass energy s = 13 TeV. The analysis uses a data sample with an integrated luminosity of 139 fb−1 collected by the ATLAS detector at the LHC from 2015 to 2018. The production cross-section for the process pp → ℓ+ℓ−γ + X (ℓ = e, μ) is measured within a fiducial phase-space region defined by kinematic requirements on the photon and the leptons, and by isolation requirements on the photon. An experimental precision of 2.9% is achieved for the fiducial cross-section. Differential cross-sections are measured as a function of each of six kinematic variables characterising the ℓ+ℓ−γ system. The data are compared with theoretical predictions based on next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations. The impact of next-to-leading-order electroweak corrections is also considered. [Figure not available: see fulltext.]
- …
