285 research outputs found
High-Resolution Ultrasound Spectroscopy for the Determination of Phospholipid Transitions in Liposomal Dispersions
High-resolution ultrasound spectroscopy (HR-US) is a spectroscopic technique using ultrasound waves at high frequencies to investigate the structural properties of dispersed materials. This technique is able to monitor the variation of ultrasound parameters (sound speed and attenuation) due to the interaction of ultrasound waves with samples as a function of temperature and concentration. Despite being employed for the characterization of several colloidal systems, there is a lack in the literature regarding the comparison between the potential of HR-US for the determination of phospholipid thermal transitions and that of other common techniques both for loaded or unloaded liposomes. Thermal transitions of liposomes composed of pure phospholipids (dimyristoylphosphatidylcholine, DMPC; dipalmitoylphosphatidylcholine, DPPC and distearoylphosphatidylcholine, DSPC), cholesterol and their mixtures were investigated by HR-US in comparison to the most commonly employed microcalorimetry (mDSC) and dynamic light scattering (DLS). Moreover, tramadol hydrochloride, caffeine or miconazole nitrate as model drugs were loaded in DPPC liposomes to study the effect of their incorporation on thermal properties of a phospholipid bilayer. HR-US provided the determination of phospholipid sol-gel transition temperatures from both attenuation and sound speed that are comparable to those calculated by mDSC and DLS techniques for all analysed liposomal dispersions, both loaded and unloaded. Therefore, HR-US is proposed here as an alternative technique to determine the transition temperature of phospholipid membrane in liposomes
Synthesis and Properties of Sucrose- and Lactose-Based Aromatic Ester Surfactants as Potential Drugs Permeability Enhancers
The delivery of therapeutics across biological membranes (e.g., mucosal barriers) by avoiding invasive routes (e.g., injection) remains a challenge in the pharmaceutical field. As such, there is the need to discover new compounds that act as drug permeability enhancers with a favorable toxicological profile. A valid alternative is represented by the class of sugar-based ester surfactants. In this study, sucrose and lactose alkyl aromatic and aromatic ester derivatives have been synthesized with the aim to characterize them in terms of their physicochemical properties, structure–property relationship, and cytotoxicity, and to test their ability as permeability enhancer agents across Calu-3 cells. All of the tested surfactants showed no remarkable cytotoxic effect on Calu-3 cells when applied both below and above their critical micelle concentration. Among the explored molecules, lactose p-biphenyl benzoate (URB1420) and sucrose p-phenyl benzoate (URB1481) cause a reversible ~30% decrease in transepithelial electrical resistance (TEER) with the respect to the basal value. The obtained result matches with the increased in vitro permeability coefficients (Papp) calculated for FTIC-dextran across Calu-3 cells in the presence of 4 mM solutions of these surfactants. Overall, this study proposes sucrose- and lactose-based alkyl aromatic and aromatic ester surfactants as novel potential and safe permeation enhancers for pharmaceutical applications
Electrospinning and characterisation of silk fibroin/wool keratin blends
Fibroin (degummed silk) and keratin are structural biopolymers respectively from silkworm filaments and from hair, wool, feathers, nails and horns. They are candidate materials for biomediacal applications because they have several useful properties including good biocompatibility and biodegradability.
Many works deal about the electrospinning of silk fibroin solutions, but few works deal about the electrospinning of keratin in blend with other polymers; moreover, keratin hasn’t been previously electrospun as pure polymer
Effects of the blending ratio on the design of keratin/poly (Butylene succinate) nanofibers for drug delivery applications
In recent years there has been a growing interest in the use of proteins as biocompatible and environmentally friendly biomolecules for the design of wound healing and drug delivery sys-tems. Keratin is a fascinating protein, obtainable from several keratinous biomasses such as wool, hair or nails, with intrinsic bioactive properties including stimulatory effects on wound repair and excellent carrier capability. In this work keratin/poly (butylene succinate) blend solutions with functional properties tunable by manipulating the polymer blending ratios were prepared by using 1,1,1,3,3,3‐hexafluoroisopropanol as common solvent. Afterwards, these solutions doped with rho-damine B (RhB), were electrospun into blend mats and the drug release mechanism and kinetics as a function of blend composition was studied, in order to understand the potential of such mem-branes as drug delivery systems. The electrophoresis analysis carried out on keratin revealed that the solvent used does not degrade the protein. Moreover, all the blend solutions showed a non‐ Newtonian behavior, among which the Keratin/PBS 70/30 and 30/70 ones showed an amplified orientation ability of the polymer chains when subjected to a shear stress. Therefore, the resulting nan-ofibers showed thinner mean diameters and narrower diameter distributions compared to the Ker-atin/PBS 50/50 blend solution. The thermal stability and the mechanical properties of the blend elec-trospun mats improved by increasing the PBS content. Finally, the RhB release rate increased by increasing the keratin content of the mats and the drug diffused as drug‐protein complex
Synthesis and Properties of Sucrose- and Lactose-Based Aromatic Ester Surfactants as Potential Drugs Permeability Enhancers
The delivery of therapeutics across biological membranes (e.g., mucosal barriers) by avoiding invasive routes (e.g., injection) remains a challenge in the pharmaceutical field. As such, there is the need to discover new compounds that act as drug permeability enhancers with a favorable toxicological profile. A valid alternative is represented by the class of sugar-based ester surfactants. In this study, sucrose and lactose alkyl aromatic and aromatic ester derivatives have been synthesized with the aim to characterize them in terms of their physicochemical properties, structure–property relationship, and cytotoxicity, and to test their ability as permeability enhancer agents across Calu-3 cells. All of the tested surfactants showed no remarkable cytotoxic effect on Calu-3 cells when applied both below and above their critical micelle concentration. Among the explored molecules, lactose p-biphenyl benzoate (URB1420) and sucrose p-phenyl benzoate (URB1481) cause a reversible ~30% decrease in transepithelial electrical resistance (TEER) with the respect to the basal value. The obtained result matches with the increased in vitro permeability coefficients (Papp) calculated for FTIC-dextran across Calu-3 cells in the presence of 4 mM solutions of these surfactants. Overall, this study proposes sucrose- and lactose-based alkyl aromatic and aromatic ester surfactants as novel potential and safe permeation enhancers for pharmaceutical applications
Developing keratin sponges with tunable morphologies and controlled antioxidant properties induced by doping with polydopamine (PDA) nanoparticles
his work investigates the preparation of wool keratin sponges by freeze-drying procedure starting form keratin aqueous solutions. The study highlights the correlations between process parameters (protein concentration and freezing rate) and the chemical-physical properties of the final sponges.
In particular, as the keratin concentration increases from 1 to 20% wt, the mean pore size and the porosity decrease from 62 to 37 mu m and from 94 to 50% respectively, while the chemical stability in physiological conditions increases, as well as the thermal stability and the elastic modulus. On the other hand, the increase of the freezing rate affects the design of sponges that appear as stacked leaflets structures with oriented pores.
Moreover, in order to confer to keratin sponges antioxidant properties, polydopamine (PDA) nanoparticles were used as fillers. To this end, PDA nanoparticles of about 130 nm were successfully dispersed in the sponges, bestowing time-dependent anti-oxidant properties on the scaffolds, with no significant modification of sponges morphological structure as well as reduction of the thermal stability and mechanical behaviour
Novel Nanostructured Scaffolds of Poly(butylene trans-1,4-cyclohexanedicarboxylate)-Based Copolymers with Tailored Hydrophilicity and Stiffness: Implication for Tissue Engineering Modeling
Here, we present novel biocompatible poly(butylene trans-1,4-cyclohexanedicarboxylate) (PBCE)-based random copolymer nanostructured scaffolds with tailored stiffness and hydrophilicity. The introduction of a butylene diglycolate (BDG) co-unit, containing ether oxygen atoms, along the PBCE chain remarkably improved the hydrophilicity and chain flexibility. The copolymer containing 50 mol% BDG co-units (BDG50) and the parent homopolymer (PBCE) were synthesized and processed as electrospun scaffolds and compression-molded films, added for the sake of comparison. We performed thermal, wettability, and stress–strain measures on the PBCE-derived scaffolds and films. We also conducted biocompatibility studies by evaluating the adhesion and proliferation of multipotent mesenchymal/stromal cells (hBM-MSCs) on each polymeric film and scaffold. We demonstrated that solid-state properties can be tailored by altering sample morphology besides chemical structure. Thus, scaffolds were characterized by a higher hydrophobicity and a lower elastic modulus than the corresponding films. The three-dimensional nanostructure conferred a higher adsorption protein capability to the scaffolds compared to their film counterparts. Finally, the PBCE and BDG50 scaffolds were suitable for the long-term culture of hBM-MSCs. Collectively, the PBCE homopolymer and copolymer are good candidates for tissue engineering applications
Microfluidic manufacturing of tioconazole loaded keratin nanocarriers: Development and optimization by design of experiments
Fungal infections of the skin, nails, and hair are a common health concern affecting a significant proportion of the population worldwide. The current treatment options include topical and systematic agents which have low permeability and prolonged treatment period, respectively. Consequently, there is a growing need for a permeable, effective, and safe treatment. Keratin nanoparticles are a promising nanoformulation that can improve antifungal agent penetration, providing sustainable targeted drug delivery. In this study, keratin nanoparticles were prepared using a custom-made 3D-printed microfluidic chip and the manufacturing process was optimized using the design of experiments (DoE) approach. The total flow rate (TFR), flow rate ratio (FRR), and keratin concentration were found to be the most influential factors of the size and polydispersity index (PDI) of the nanoparticles. The crosslinking procedure by means of tannic acid as safe and biocompatible compound was also optimized. Keratin nanoparticles loaded with a different amount of tioconazole showed a size lower than 200 nm, a PDI lower than 0.2 and an encapsulation efficiency of 91 ± 1.9 %. Due to their sustained drug release, the formulations showed acceptable in vitro biocompatibility. Furthermore, a significant inhibitory effect compared to the free drug against Microsporum canis
Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells
Background: The immunoregulatory enzyme indoleamine 2,3-dioxygenase, which catalyzes the conversion of tryptophan into kynurenine, is expressed in a significant subset of patients with acute myeloid leukemia, resulting in the inhibition of T-cell proliferation and the induction of regulatory T cells. Acute myeloid leukemia cells can be differentiated into dendritic cells, which have increased immunogenicity and have been proposed as vaccines against leukemia.
Design and Methods: Leukemic dendritic cells were generated from acute myeloid leukemia cells and used as stimulators in functional assays, including the induction of regulatory T cells. Indoleamine 2,3-dioxygenase expression in leukemic dendritic cells was evaluated at molecular, protein and enzymatic levels.
Results: We demonstrate that, after differentiation into dendritic cells, both indoleamine 2,3-dioxygenase-negative and indoleamine 2,3-dioxygenase-positive acute myeloid leukemia samples show induction and up-regulation of indoleamine 2,3-dioxygenase gene and protein, respectively. Indoleamine 2,3-dioxygenase-positive acute myeloid leukemia dendritic cells catabolize tryptophan into kynurenine metabolite and inhibit T-cell proliferation through an indoleamine 2,3-dioxygenase-dependent mechanism. Moreover, indoleamine 2,3-dioxygenase-positive leukemic dendritic cells increase the number of allogeneic and autologous CD4+CD25+ Foxp3+ T cells and this effect is completely abrogated by the indoleamine 2,3-dioxygenase-inhibitor, 1-methyl tryptophan. Purified CD4+CD25+ T cells obtained from co-culture with indoleamine 2,3-dioxygenase-positive leukemic dendritic cells act as regulatory T cells as they inhibit naive T-cell proliferation and impair the complete maturation of normal dendritic cells. Importantly, leukemic dendritic cell-induced regulatory T cells are capable of in vitro suppression of a leukemia-specific T cell-mediated immune response, directed against the leukemia-associated antigen, Wilms’ tumor protein.
Conclusions: These data identify indoleamine 2,3-dioxygenase-mediated catabolism as a tolerogenic mechanism exerted by leukemic dendritic cells and have clinical implications for the use of these cells for active immunotherapy of leukemia
Keratins extracted from Merino wool and Brown Alpaca fibres as potential fillers for PLLA-based biocomposites
This paper reports on the promising perspectives of using keratins extracted by sulphitolysis reaction from Merino wool (KM) and Brown Alpaca fibres (KA) in poly (l-lactide) (PLLA)-based biomaterials. Both types of keratin were dispersed in chloroform (CHCl3) and tetrahydrofuran (THF), and optimisation of dispersion methods and parameters using the two selected solvents was considered. The extraction yield, as well as supermolecular structures, morphology and thermal behaviour of the two proteins before and after the regeneration in CHCl3 was investigated. The results indicated that the supermolecular structures and thermal behaviour of the two proteins were affected by the interaction with CHCl3, producing decrease of the amount of α-helix structures in KM and an increase for KA, a slight decrease of β-sheet structures and a reduced thermal stability of α-crystallites for both keratins. Biocomposite films based on PLLA polymer matrix and two different contents of Merino wool and Brown Alpaca keratins (1 % and 5 % wt) were successfully developed by solvent casting in chloroform and the resulting morphologies after incorporation of different keratins (as a function of content and source) give evidence of different surface topographies, with a random distribution of keratin in flask-like structure. PLLA/5KA and PLLA/5KM samples with 1 % and 5 % wt of keratins show a specific pore-like surface microstructure, induced by solvent evaporation.Peer Reviewe
- …
