17 research outputs found

    Optical parametric oscillation with distributed feedback in cold atoms

    Full text link
    There is currently a strong interest in mirrorless lasing systems, in which the electromagnetic feedback is provided either by disorder (multiple scattering in the gain medium) or by order (multiple Bragg reflection). These mechanisms correspond, respectively, to random lasers and photonic crystal lasers. The crossover regime between order and disorder, or correlated disorder, has also been investigated with some success. Here, we report one-dimensional photonic-crystal lasing (that is, distributed feedback lasing) with a cold atom cloud that simultaneously provides both gain and feedback. The atoms are trapped in a one-dimensional lattice, producing a density modulation that creates a strong Bragg reflection with a small angle of incidence. Pumping the atoms with auxiliary beams induces four-wave mixing, which provides parametric gain. The combination of both ingredients generates a mirrorless parametric oscillation with a conical output emission, the apex angle of which is tunable with the lattice periodicity

    Linewidth of collimated wavelength-converted emission in Rb vapour

    No full text
    We present a study of the spectral linewidth of collimated blue light (CBL) that results from wave mixing of low-power continuous-wave laser radiation at 780 and 776 nm and an internally generated mid-IR field at 5.23 μm in Rb vapour. Using a high-finesse Fabry–Perot interferometer, the spectral width of the CBL is found to be <1.3 MHz for a wide range of experimental conditions. We demonstrate using frequency-modulated laser light that the CBL linewidth is mainly limited by the temporal coherence of the applied laser fields rather than the atom–light interaction itself. The obtained result allows the same 1.3 MHz upper limit to be set for the linewidth of the collimated mid-IR radiation at 5.23 μm, which has not been directly detected.Alexander Akulshin, Christopher Perrella, Gar-Wing Truong, Andre Luiten, Dmitry Budker, Russell McLea

    Field enhancement with classical electromagnetically induced transparency

    No full text
    A key challenge in the design of tunable and nonlinear metamaterials is creating large local electromagnetic fields to enhance the nonlinear interaction. An attractive way to achieve local field enhancement is the use of metamaterials with dark resonators, i.e., with meta-atoms that do not directly couple to the external field. Such metamaterials exhibit a scattering response that is similar to what is observed for electromagnetically induced transparency (EIT): they combine large group delay with low absorption at the same frequency. Classical EIT metamaterials are interesting for nonlinear metamaterials because of the large field enhancement due to the lack of radiation loss in the dark element and for tunable metamaterials because of the high sensitivity of the resonance to the environment or a control signal. We discuss the design and modeling of EIT metamaterials and some early work on their applications to media with nonlinear/tunable response

    Field enhancement with classical electromagnetically induced transparency

    No full text
    A key challenge in the design of tunable and nonlinear metamaterials is creating large local electromagnetic fields to enhance the nonlinear interaction. An attractive way to achieve local field enhancement is the use of metamaterials with dark resonators, i.e., with meta-atoms that do not directly couple to the external field. Such metamaterials exhibit a scattering response that is similar to what is observed for electromagnetically induced transparency (EIT): they combine large group delay with low absorption at the same frequency. Classical EIT metamaterials are interesting for nonlinear metamaterials because of the large field enhancement due to the lack of radiation loss in the dark element and for tunable metamaterials because of the high sensitivity of the resonance to the environment or a control signal. We discuss the design and modeling of EIT metamaterials and some early work on their applications to media with nonlinear/tunable response
    corecore