17 research outputs found
Optical parametric oscillation with distributed feedback in cold atoms
There is currently a strong interest in mirrorless lasing systems, in which
the electromagnetic feedback is provided either by disorder (multiple
scattering in the gain medium) or by order (multiple Bragg reflection). These
mechanisms correspond, respectively, to random lasers and photonic crystal
lasers. The crossover regime between order and disorder, or correlated
disorder, has also been investigated with some success. Here, we report
one-dimensional photonic-crystal lasing (that is, distributed feedback lasing)
with a cold atom cloud that simultaneously provides both gain and feedback. The
atoms are trapped in a one-dimensional lattice, producing a density modulation
that creates a strong Bragg reflection with a small angle of incidence. Pumping
the atoms with auxiliary beams induces four-wave mixing, which provides
parametric gain. The combination of both ingredients generates a mirrorless
parametric oscillation with a conical output emission, the apex angle of which
is tunable with the lattice periodicity
Linewidth of collimated wavelength-converted emission in Rb vapour
We present a study of the spectral linewidth of collimated blue light (CBL) that results from wave mixing of low-power continuous-wave laser radiation at 780 and 776 nm and an internally generated mid-IR field at 5.23 μm in Rb vapour. Using a high-finesse Fabry–Perot interferometer, the spectral width of the CBL is found to be <1.3 MHz for a wide range of experimental conditions. We demonstrate using frequency-modulated laser light that the CBL linewidth is mainly limited by the temporal coherence of the applied laser fields rather than the atom–light interaction itself. The obtained result allows the same 1.3 MHz upper limit to be set for the linewidth of the collimated mid-IR radiation at 5.23 μm, which has not been directly detected.Alexander Akulshin, Christopher Perrella, Gar-Wing Truong, Andre Luiten, Dmitry Budker, Russell McLea
Line-Shape Variations of Two-Photon Transition in Molecular Rhomb-Type System Based on Quantum Interference
Switching suppression and enhancement of fluorescence and six-wave mixing by phase modulation
Theoretical analyses of resonant frequency shift in anomalous dispersion enhanced resonant optical gyroscopes
Field enhancement with classical electromagnetically induced transparency
A key challenge in the design of tunable and nonlinear metamaterials is creating large local electromagnetic fields to enhance the nonlinear interaction. An attractive way to achieve local field enhancement is the use of metamaterials with dark resonators, i.e., with meta-atoms that do not directly couple to the external field. Such metamaterials exhibit a scattering response that is similar to what is observed for electromagnetically induced transparency (EIT): they combine large group delay with low absorption at the same frequency. Classical EIT metamaterials are interesting for nonlinear metamaterials because of the large field enhancement due to the lack of radiation loss in the dark element and for tunable metamaterials because of the high sensitivity of the resonance to the environment or a control signal. We discuss the design and modeling of EIT metamaterials and some early work on their applications to media with nonlinear/tunable response
Field enhancement with classical electromagnetically induced transparency
A key challenge in the design of tunable and nonlinear metamaterials is creating large local electromagnetic fields to enhance the nonlinear interaction. An attractive way to achieve local field enhancement is the use of metamaterials with dark resonators, i.e., with meta-atoms that do not directly couple to the external field. Such metamaterials exhibit a scattering response that is similar to what is observed for electromagnetically induced transparency (EIT): they combine large group delay with low absorption at the same frequency. Classical EIT metamaterials are interesting for nonlinear metamaterials because of the large field enhancement due to the lack of radiation loss in the dark element and for tunable metamaterials because of the high sensitivity of the resonance to the environment or a control signal. We discuss the design and modeling of EIT metamaterials and some early work on their applications to media with nonlinear/tunable response
