44 research outputs found
Assessment of upper respiratory and gut bacterial microbiomes during COVID-19 infection in adults: potential aerodigestive transmission
\ua9 2025. The Author(s). SARS-CoV-2 is the viral pathogen responsible for COVID-19. Although morbidity and mortality frequently occur as a result of lung disease, the gastrointestinal (GI) tract is recognized as a primary location for SARS-CoV-2. Connections and interactions between the microbiome of the gut and respiratory system have been linked with viral infections via what has been referred to as the \u27gut-lung axis\u27 with potential aerodigestive communication in health and disease. This research explored the relationship between the microbiomes of the upper respiratory and GI tracts in patients with COVID-19 and examined Extraesophageal reflux (EOR), a mechanism which could contribute to dysregulated communication between the GI and respiratory tract (as identified in COVID-19). 97 patients with a laboratory diagnosis of COVID-19 infection, and 50 age-matched controls were recruited and stool, saliva and sputum were obtained from each participant. ELISA Pepsin tests and Reflux Symptom Index scores (RSI) were conducted for EOR assessment. DNA sequencing of the V4 region of the 16 S rRNA gene was performed for microbiome analysis. No differences were observed between the fecal microbiome\u27s alpha and Shannon diversity indices; however, a distinct microbial composition was observed in COVID-19 patients (when compared to the controls). The respiratory microbiota from individuals with COVID-19 demonstrated a statistically significant reduction in Shannon diversity and bacterial richness alongside an overall reduction in the prevalence of organisms from a typical healthy respiratory microbiome. Furthermore, the bacterial richness of the stool and sputum samples was significantly lower among COVID-19 patients admitted to ICU. A significantly higher RSI score and salivary pepsin level were detected among those with COVID-19. The data indicates that COVID-19 is associated with a dysregulation of both the gut and lung microbiome with a more marked perturbation in the lung, particularly among COVID-19 patients who had been admitted to the ICU. The presence of increased RSI scores, combined with elevated levels of Pepsin, suggests that increased micro-aspiration may occur, which is consistent with of under-recognized interactions between the GI and lung microbiomes in COVID-19 patients and requires additional study. Such studies would benefit from the insights provided by biological samples which reflect the continuum of the aerodigestive tract
Enhanced Efficacy of Some Antibiotics in the Presence of Silver Nanoparticles Against Clinical Isolate of <em>Pseudomonas aeruginosa</em> Recovered from Cystic Fibrosis Patients
\ua9 2024 Al-Momani et al. Introduction: Given the increasing frequency of drug-resistant bacteria and the limited progress in developing new antibiotics, it is necessary to explore new methods of combating microbial infections. Nanoparticles, particularly silver nanoparticles (Ag-NPs), have shown exceptional antibacterial characteristics; however, elevated concentrations of Ag-NPs can produce noticeable levels of toxicity in mammalian cells. Aim: This study examined the potential synergistic effect of combining a low dosage of Ag-NPs and anti-pseudomonas drugs against Pseudomonas aeruginosa (ATCC strain) and eleven clinical isolates from cystic fibrosis patients. Methods: The Ag-NPs were chemically produced by utilizing a seed extract from Peganum Harmala and characterized via ultraviolet-visible spectroscopy and scanning electron microscopy. The broth microdilution technique was utilized to investigate the minimum inhibitory concentration (MIC) of Ag-NPs and eight antibiotics (Piperacillin, Ciprofloxacin, Levofloxacin, Meropenem, Amikacin, Ceftazidime, Gentamicin, Aztreonam). The fractional inhibitory concentration index (FICI) was determined via the checkerboard method to evaluate the synergistic effects of Ag-NPs and various antibiotics. Results: The biosynthesized Ag-NPs were uniformly spherical and measured around 15 nm in size. When combined with antibiotics, Ag-NP produced statistically significant reductions in the amount of antibiotics required to completely prevent P. aeruginosa growth for all strains. The findings revealed that the MIC of Ag-NPs was 15 ug/mL for all strains which decreased substantially when administered with antibiotics at a dose of 1.875–7.5 ug/mL. The majority of Ag-NP and antibiotic combinations exhibited a synergistic or partially synergistic impact. This was particularly noticeable in combinations containing Meropenem, Ciprofloxacin, and Aztreonam (in which the FIC index was less than or equal to 0.5). Conclusion: The findings revealed that combining Ag-NPs with antibiotics was more effective than using Ag-NPs or antibiotics in isolation and that combinations of Ag-NPs and antimicrobial agents displayed synergistic activity against the majority of strains assessed
Diagnostic algorithm for papillary urothelial tumors in the urinary bladder
Papillary urothelial neoplasms with deceptively bland cytology cannot be easily classified. We aimed to design a new algorithm that could differentiate between these neoplasms based on a scoring system. We proposed a new scoring system that enables to reproducibly diagnose non-invasive papillary urothelial tumors. In this system, each lesion was given individual scores from 0 to 3 for mitosis and cellular thickness, from 0 to 2 for cellular atypia, and an additional score for papillary fusion. These scores were combined to form a summed score allowing the tumors to be ranked as follows: 0–1 = UP, 2–4 = low malignant potential (LMP), 5–7 = low-grade transitional cell carcinoma (TCC), and 8–9 = high-grade TCC. In addition to the scoring system, ancillary studies of MIB and p53 indexes with CK20 expression pattern analyses were compared together with clinical parameters. The MIB index was strongly correlated with disease progression. Four of the 22 LMP patients (18.2%) had late recurrences, two of these four (9.1%) had progression to low-grade carcinoma. The MIB index for LMP patients was strongly associated with recurrence (recurrence vs. non-recurrence, 16.5 vs. 8.1, p < 0.001). The proposed scoring system could enhance the reproducibility to distinguish papillary urothelial neoplasms
A Review of Time Courses and Predictors of Lipid Changes with Fenofibric Acid-Statin Combination
Fibrates activate peroxisome proliferator activated receptor α and exert beneficial effects on triglycerides, high-density lipoprotein cholesterol, and low density lipoprotein subspecies. Fenofibric acid (FA) has been studied in a large number of patients with mixed dyslipidemia, combined with a low- or moderate-dose statin. The combination of FA with simvastatin, atorvastatin and rosuvastatin resulted in greater improvement of the overall lipid profile compared with the corresponding statin dose. The long-term efficacy of FA combined with low- or moderate- dose statin has been demonstrated in a wide range of patients, including patients with type 2 diabetes mellitus, metabolic syndrome, or elderly subjects. The FA and statin combination seems to be a reasonable option to further reduce cardiovascular risk in high-risk populations, although trials examining cardiovascular disease events are missing
Progression of diethylnitrosamine-induced hepatic carcinogenesis in carnitine-depleted rats
AIM: To investigate whether carnitine deficiency is a risk factor during the development of diethylnitrosamine (DENA)-induced hepatic carcinogenesis. METHODS: A total of 60 male Wistar albino rats were divided into six groups with 10 animals in each group. Rats in group I (control group) received a single intraperitoneal (i.p.) injection of normal saline. Animals in group 2 (carnitine-supplemented group) were given L-carnitine (200 mg/kg per day) in drinking water for 8 wk. Animals in group 3 (carnitine-depleted group) were given D-carnitine (200 mg/kg per day) and mildronate (200 mg/kg per day) in drinking water for 8 wk. Rats in group 4 (DENA group) were injected with a single dose of DENA (200 mg/kg, i.p.) and 2 wk later received a single dose of carbon tetrachloride (2 mL/kg) by gavage as 1:1 dilution in corn oil. Animals in group 5 (DENA-carnitine depleted group) received the same treatment as group 3 and group 4. Rats in group 6 (DENA-carnitine supplemented group) received the same treatment as group 2 and group 4.RESULTS: Administration of DENA resulted in a significant increase in alanine transaminase (ALT), gamma-glutamyl transferase (G-GT), alkaline phosphatase (ALP), total bilirubin, thiobarbituric acid reactive substances (TBARS) and total nitrate/ nitrite (NOx) and a significant decrease in reduced glutathione (GSH), glutathione peroxidase (GSHPx), catalase (CAT) and total carnitine content in liver tissues. In the carnitine-depleted rat model, DENA induced a dramatic increase in serum ALT, G-GT, ALP and total bilirubin, as well as a progressive reduction in total carnitine content in liver tissues. Interestingly, L-carnitine supplementation resulted in a complete reversal of the increase in liver enzymes, TBARS and NOx, and a decrease in total carnitine, GSH, GSHPx, and CAT induced by DENA, compared with the control values. Histopathological examination of liver tissues confirmed the biochemical data, where L-carnitine prevented DENA-induced hepatic carcinogenesis while D-carnitine-mildronate aggravated DENA-induced hepatic damage.CONCLUSION: Data from this study suggest for the first time that: (1) carnitine deficiency is a risk factor and should be viewed as a mechanism in DENA-induced hepatic carcinogenesis; (2) oxidative stress plays an important role but is not the only cause of DENA-induced hepatic carcinogenesis; and (3) long-term L-carnitine supplementation prevents the development of DENA-induced liver cancer. (C) 2009 The WIG Press and Baishideng. All rights reserved
Association of Dyslipidemia with Renal Cell Carcinoma: A 1∶2 Matched Case-Control Study
Abnormal serum lipid profiles are associated with the risk of some cancers, but the direction and magnitude of the association with renal cell carcinoma is unclear. We explore the relationship between serum lipids and renal cell carcinoma via a matched case-control study. A 1∶2-matched case-control study design was applied, where one renal cell carcinoma patient was matched to two non-renal-cell-carcinoma residents with respect to age (±0 year) and gender. Cases (n = 248) were inpatients with a primary diagnosis of renal cell carcinoma, confirmed by pathology after operations. Controls were sampled from a community survey database matched on age and gender with cases, 2 controls for each case. Stratified Cox proportional hazard regression analysis was used to obtain hazard ratios and corresponding 95% confidence intervals of lipids level and dyslipidemia for the risk of renal cell carcinoma. Elevated serum cholesterol (p<0.001), LDL cholesterol (p<0.001), and HDL cholesterol (p = 0.003) are associated with decreased hazard of renal cell carcinoma, adjusting for obesity, smoke, hypertension and diabetes. However, risk caused by hTG showed no statistical significance (p = 0.263). This study indicates that abnormal lipid profile influences the risk of renal cell carcinoma
Next-Generation WSN for Environmental Monitoring Employing Big Data Analytics, Machine Learning and Artificial Intelligence
Biochemical characterization of the Arabidopsis KS-type dehydrin protein, whose gene expression is constitutively abundant rather than stress dependent
autho
