51 research outputs found
First detection of Leishmania major in peridomestic Phlebotomus papatasi from Isfahan province, Iran: comparison of nested PCR of nuclear ITS ribosomal DNA and semi-nested PCR of minicircle kinetoplast DNA.
Two PCR methods were compared for their sensitivity in detecting cultured Leishmania major, before being used to estimate infection rates in female sandflies (Phlebotomus papatasi) collected from peridomestic animal shelters and the nearby burrows of the gerbil reservoir hosts, Rhombomys opimus, in Isfahan province, central Iran. A semi-nested PCR was used to amplify a fragment of minicircle kinetoplast (k) DNA with a length and sequence diagnostic for L. major, and a nested PCR was developed to amplify a fragment containing the internal transcribed spacers of the ribosomal RNA genes (ITS-rDNA) with a sequence diagnostic for L. major. The semi-nested PCR was less sensitive than the nested PCR when using DNA extracted from cultured promastigotes of L. major, but it was more sensitive for detecting L. major in wild-caught sandflies. At the edges of two Isfahan villages, infection rates were significantly higher in P.papatasi collected outside gerbil burrows (14/28) compared with those from peridomestic animal shelters (2/21). This is the first record of L. major detected in P.papatasi from peridomestic sites in Isfahan province
Using molecular data for epidemiological inference: assessing the prevalence of Trypanosoma brucei rhodesiense in Tsetse in Serengeti, Tanzania
Background: Measuring the prevalence of transmissible Trypanosoma brucei rhodesiense in tsetse populations is essential for understanding transmission dynamics, assessing human disease risk and monitoring spatio-temporal trends and the impact of control interventions. Although an important epidemiological variable, identifying flies which carry transmissible infections is difficult, with challenges including low prevalence, presence of other trypanosome species in the same fly, and concurrent detection of immature non-transmissible infections. Diagnostic tests to measure the prevalence of T. b. rhodesiense in tsetse are applied and interpreted inconsistently, and discrepancies between studies suggest this value is not consistently estimated even to within an order of magnitude.
Methodology/Principal Findings: Three approaches were used to estimate the prevalence of transmissible Trypanosoma brucei s.l. and T. b. rhodesiense in Glossina swynnertoni and G. pallidipes in Serengeti National Park, Tanzania: (i) dissection/microscopy; (ii) PCR on infected tsetse midguts; and (iii) inference from a mathematical model. Using dissection/microscopy the prevalence of transmissible T. brucei s.l. was 0% (95% CI 0–0.085) for G. swynnertoni and 0% (0–0.18) G. pallidipes; using PCR the prevalence of transmissible T. b. rhodesiense was 0.010% (0–0.054) and 0.0089% (0–0.059) respectively, and by model inference 0.0064% and 0.00085% respectively.
Conclusions/Significance: The zero prevalence result by dissection/microscopy (likely really greater than zero given the results of other approaches) is not unusual by this technique, often ascribed to poor sensitivity. The application of additional techniques confirmed the very low prevalence of T. brucei suggesting the zero prevalence result was attributable to insufficient sample size (despite examination of 6000 tsetse). Given the prohibitively high sample sizes required to obtain meaningful results by dissection/microscopy, PCR-based approaches offer the current best option for assessing trypanosome prevalence in tsetse but inconsistencies in relating PCR results to transmissibility highlight the need for a consensus approach to generate meaningful and comparable data
A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies
Background The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. Methodology and Principal Findings Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? Conclusions and Significance We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they transmit and the animal reservoirs of the parasites
HuR/ELAVL1 drives malignant peripheral nerve sheath tumor growth and metastasis
Cancer cells can develop a strong addiction to discrete molecular regulators, which control the aberrant gene expression programs that drive and maintain the cancer phenotype. Here, we report the identification of the RNA-binding protein HuR/ELAVL1 as a central oncogenic driver for malignant peripheral nerve sheath tumors (MPNSTs), which are highly aggressive sarcomas that originate from cells of the Schwann cell lineage. HuR was found to be highly elevated and bound to a multitude of cancer-associated transcripts in human MPNST samples. Accordingly, genetic and pharmacological inhibition of HuR had potent cytostatic and cytotoxic effects on tumor growth, and strongly suppressed metastatic capacity in vivo. Importantly, we linked the profound tumorigenic function of HuR to its ability to simultaneously regulate multiple essential oncogenic pathways in MPNST cells, including the Wnt/β-catenin, YAP/TAZ, RB/E2F, and BET pathways, which converge on key transcriptional networks. Given the exceptional dependency of MPNST cells on HuR for survival, proliferation, and dissemination, we propose that HuR represents a promising therapeutic target for MPNST treatment
How to increase the population of a Phlebotomus perniciosus (Diptera: Psychodidae) colony: a new method
Ecology of Phlebotomine Sand Flies in the Rural Community of Mont Rolland (Thiès Region, Senegal): Area of Transmission of Canine Leishmaniasis
BACKGROUND: Different epidemiological studies previously indicated that canine leishmaniasis is present in the region of Thiès (Senegal). However, the risks to human health, the transmission cycle and particularly the implicated vectors are unknown. METHODOLOGY/PRINCIPAL FINDINGS: To improve our knowledge on the population of phlebotomine sand flies and the potential vectors of canine leishmaniasis, sand flies were collected using sticky traps, light traps and indoor spraying method using pyrethroid insecticides in 16 villages of the rural community of Mont Rolland (Thiès region) between March and July 2005. The 3788 phlebotomine sand flies we collected (2044 males, 1744 females) were distributed among 9 species of which 2 belonged to the genus Phlebotomus: P. duboscqi (vector of cutaneous leishmaniasis in Senegal) and P. rodhaini. The other species belonged to the genus Sergentomyia: S. adleri, S. clydei, S. antennata, S. buxtoni, S. dubia, S. schwetzi and S. magna. The number of individuals and the species composition differed according to the type of trap, suggesting variable, species-related degrees of endophily or exophily. The two species of the genus Phlebotomus were markedly under-represented in comparison to the species of the genus Sergentomyia. This study also shows a heterogeneous spatial distribution within the rural community that could be explained by the different ecosystems and particularly the soil characteristics of this community. Finally, the presence of the S. dubia species appeared to be significantly associated with canine leishmaniasis seroprevalence in dogs. CONCLUSIONS/SIGNIFICANCE: Our data allow us to hypothesize that the species of the genus Sergentomyia and particularly the species S. dubia and S. schwetzi might be capable of transmitting canine leishmaniasis. These results challenge the dogma that leishmaniasis is exclusively transmitted by species of the genus Phlebotomus in the Old World. This hypothesis should be more thoroughly evaluated
Characterization of simple sequence repeats (SSRs) from Phlebotomus papatasi (Diptera: Psychodidae) expressed sequence tags (ESTs)
<p>Abstract</p> <p>Background</p> <p><it>Phlebotomus papatasi </it>is a natural vector of <it>Leishmania major</it>, which causes cutaneous leishmaniasis in many countries. Simple sequence repeats (SSRs), or microsatellites, are common in eukaryotic genomes and are short, repeated nucleotide sequence elements arrayed in tandem and flanked by non-repetitive regions. The enrichment methods used previously for finding new microsatellite loci in sand flies remain laborious and time consuming; <it>in silico </it>mining, which includes retrieval and screening of microsatellites from large amounts of sequence data from sequence data bases using microsatellite search tools can yield many new candidate markers.</p> <p>Results</p> <p>Simple sequence repeats (SSRs) were characterized in <it>P. papatasi </it>expressed sequence tags (ESTs) derived from a public database, National Center for Biotechnology Information (NCBI). A total of 42,784 sequences were mined, and 1,499 SSRs were identified with a frequency of 3.5% and an average density of 15.55 kb per SSR. Dinucleotide motifs were the most common SSRs, accounting for 67% followed by tri-, tetra-, and penta-nucleotide repeats, accounting for 31.1%, 1.5%, and 0.1%, respectively. The length of microsatellites varied from 5 to 16 repeats. Dinucleotide types; AG and CT have the highest frequency. Dinucleotide SSR-ESTs are relatively biased toward an excess of (AX)n repeats and a low GC base content. Forty primer pairs were designed based on motif lengths for further experimental validation.</p> <p>Conclusion</p> <p>The first large-scale survey of SSRs derived from <it>P. papatasi </it>is presented; dinucleotide SSRs identified are more frequent than other types. EST data mining is an effective strategy to identify functional microsatellites in <it>P. papatasi</it>.</p
Lutzomyia Sand Fly Diversity and Rates of Infection by Wolbachia and an Exotic Leishmania Species on Barro Colorado Island, Panama
Certain sand fly species living inside or on the edge of tropical forests are well known to transmit a protozoan to humans, which in lowland Panama develops into a cutaneous form of leishmaniasis; open, itching sores on the face and extremities requiring aggressive treatment with antimonial compounds. Morphological characters and DNA sequence from mitochondrial and nuclear gene fragments permitted us to identify and then establish historical relationships among 20 common sand fly species occurring in the understory of Barro Colorado Island, a forested preserve in the middle of the Panama Canal. Individuals in three of these sand fly species were found to be 26–43% infected by Leishmania naiffi, a species hitherto known only from the Amazonian region and the Caribbean. We then screened the same 20 sand fly species for the cytoplasmically transmitted bacteria Wolbachia pipientis, finding three infected at high rates, each by a distinct strain. Lutzomyia trapidoi, the most likely transmitter of Leishmania to humans in Panama, was among the Wolbachia-infected species, thus marking it as a possible high-value target for future biocontrol studies using the bacteria either to induce mating incompatabilities or to drive selected genes into the population
Identification of phlebotomine sand flies using one MALDI-TOF MS reference database and two mass spectrometer systems
Salivary Gland Transcriptomes and Proteomes of Phlebotomus tobbi and Phlebotomus sergenti, Vectors of Leishmaniasis
Phlebotomine female sand flies require a blood meal for egg development, and it is during the blood feeding that pathogens can be transmitted to a host. Leishmania parasites are among these pathogens and can cause disfiguring cutaneous or even possibly fatal visceral disease. The Leishmania parasites are deposited into the bite wound along with the sand fly saliva. The components of the saliva have many pharmacologic and immune functions important in blood feeding and disease establishment. In this article, the authors identify and investigate the protein components of saliva of two important vectors of leishmaniasis, Phlebotomus tobbi and P. sergenti, by sequencing the transcriptomes of the salivary glands. We then compared the predicted protein sequences of these salivary proteins to those of other bloodsucking insects to elucidate the similarity in composition, structure, and enzymatic activity. Finally, this descriptive analysis of P. tobbi and P. sergenti transcriptomes can aid future research in identifying molecules for epidemiologic assays and in investigating sand fly-host interactions
- …
