1,991 research outputs found
Measurement-based quantum control of mechanical motion
Controlling a quantum system based on the observation of its dynamics is
inevitably complicated by the backaction of the measurement process. Efficient
measurements, however, maximize the amount of information gained per
disturbance incurred. Real-time feedback then enables both canceling the
measurement's backaction and controlling the evolution of the quantum state.
While such measurement-based quantum control has been demonstrated in the clean
settings of cavity and circuit quantum electrodynamics, its application to
motional degrees of freedom has remained elusive. Here we show
measurement-based quantum control of the motion of a millimetre-sized membrane
resonator. An optomechanical transducer resolves the zero-point motion of the
soft-clamped resonator in a fraction of its millisecond coherence time, with an
overall measurement efficiency close to unity. We use this position record to
feedback-cool a resonator mode to its quantum ground state (residual thermal
occupation n = 0.29 +- 0.03), 9 dB below the quantum backaction limit of
sideband cooling, and six orders of magnitude below the equilibrium occupation
of its thermal environment. This realizes a long-standing goal in the field,
and adds position and momentum to the degrees of freedom amenable to
measurement-based quantum control, with potential applications in quantum
information processing and gravitational wave detectors.Comment: New version with corrected detection efficiency as determined with a
NIST-calibrated photodiode, added references and revised structure. Main
conclusions are identical. 41 pages, 18 figure
Electronic Visualisation in Chemistry: From Alchemy to Art
Chemists now routinely use software as part of their work. For example, virtual chemistry allows chemical reactions to be simulated. In particular, a selection of software is available for the visualisation of complex 3-dimensional molecular structures. Many of these are very beautiful in their own right. As well as being included as illustrations in academic papers, such visualisations are often used on the covers of chemistry journals as artistically decorative and attractive motifs. Chemical images have also been used as the basis of artworks in exhibitions. This paper explores the development of the relationship of chemistry, art, and IT. It covers some of the increasingly sophisticated software used to generate these projections (e.g., UCSF Chimera) and their progressive use as a visual art form
Predictive significance of the six-minute walk distance for long-term survival in chronic hypercapnic respiratory failure
Background: The 6-min walk distance ( 6-MWD) is a global marker of functional capacity and prognosis in chronic obstructive pulmonary disease ( COPD), but less explored in other chronic respiratory diseases. Objective: To study the role of 6-MWD in chronic hypercapnic respiratory failure ( CHRF). Methods: In 424 stable patients with CHRF and non-invasive ventilation ( NIV) comprising COPD ( n = 197), restrictive diseases ( RD; n = 112) and obesity-hypoventilation- syndrome ( OHS; n = 115), the prognostic value of 6-MWD for long- term survival was assessed in relation to that of body mass index (BMI), lung function, respiratory muscle function and laboratory parameters. Results: 6-MWD was reduced in patients with COPD ( median 280 m; quartiles 204/350 m) and RD ( 290 m; 204/362 m) compared to OHS ( 360 m; 275/440 m; p <0.001 each). Overall mortality during 24.9 (13.1/40.5) months was 22.9%. In the 424 patients with CHRF, 6-MWD independently predicted mortality in addition to BMI, leukocytes and forced expiratory volume in 1 s ( p <0.05 each). In COPD, 6-MWD was strongly associated with mortality using the median {[} p <0.001, hazard ratio ( HR) = 3.75, 95% confidence interval (CI): 2.24-6.38] or quartiles as cutoff levels. In contrast, 6-MWD was only significantly associated with impaired survival in RD patients when it was reduced to 204 m or less (1st quartile; p = 0.003, HR = 3.31, 95% CI: 1.73-14.10), while in OHS 6-MWD had not any prognostic value. Conclusions: In patients with CHRF and NIV, 6-MWD was predictive for long- term survival particularly in COPD. In RD only severely reduced 6-MWD predicted mortality, while in OHS 6-MWD was relatively high and had no prognostic value. These results support a disease-specific use of 6-MWD in the routine assessment of patients with CHRF. Copyright (C) 2007 S. Karger AG, Basel
Photonic quantum technologies
The first quantum technology, which harnesses uniquely quantum mechanical
effects for its core operation, has arrived in the form of commercially
available quantum key distribution systems that achieve enhanced security by
encoding information in photons such that information gained by an eavesdropper
can be detected. Anticipated future quantum technologies include large-scale
secure networks, enhanced measurement and lithography, and quantum information
processors, promising exponentially greater computation power for particular
tasks. Photonics is destined for a central role in such technologies owing to
the need for high-speed transmission and the outstanding low-noise properties
of photons. These technologies may use single photons or quantum states of
bright laser beams, or both, and will undoubtably apply and drive
state-of-the-art developments in photonics
Isolated and dynamical horizons and their applications
Over the past three decades, black holes have played an important role in
quantum gravity, mathematical physics, numerical relativity and gravitational
wave phenomenology. However, conceptual settings and mathematical models used
to discuss them have varied considerably from one area to another. Over the
last five years a new, quasi-local framework was introduced to analyze diverse
facets of black holes in a unified manner. In this framework, evolving black
holes are modeled by dynamical horizons and black holes in equilibrium by
isolated horizons. We review basic properties of these horizons and summarize
applications to mathematical physics, numerical relativity and quantum gravity.
This paradigm has led to significant generalizations of several results in
black hole physics. Specifically, it has introduced a more physical setting for
black hole thermodynamics and for black hole entropy calculations in quantum
gravity; suggested a phenomenological model for hairy black holes; provided
novel techniques to extract physics from numerical simulations; and led to new
laws governing the dynamics of black holes in exact general relativity.Comment: 77 pages, 12 figures. Typos and references correcte
Theoretical study of Oldroyd-b visco-elastic fluid flow through curved pipes with slip effects in polymer flow processing
The characteristics of the flow field of both viscous and viscoelastic fluids passing through a curved pipe with a Navier slip boundary condition have been investigated analytically in the present study. The Oldroyd-B constitutive equation is employed to simulate realistic transport of dilute polymeric solutions in curved channels. In order to linearize the momentum and constitutive equations, a perturbation method is used in which the ratio of radius of cross section to the radius of channel curvature is employed as the perturbation parameter. The intensity of secondary and main flows is mainly affected by the hoop stress and it is demonstrated in the present study that both the Weissenberg number (the ratio of elastic force to viscous force) and slip coefficient play major roles in determining the strengths of both flows. It is also shown that as a result of an increment in slip coefficient, the position of maximum velocity markedly migrates away from the pipe center towards the outer side of curvature. Furthermore, results corresponding to Navier slip scenarios exhibit non-uniform distributions in both the main and lateral components of velocity near the wall which can notably vary from the inner side of curvature to the outer side. The present solution is also important in polymeric flow processing systems because of experimental evidence indicating that the no-slip condition can fail for these flows, which is of relevance to chemical engineers
Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection.
Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses
Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity
Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)
Examining mindfulness and its relation to self-differentiation and alexithymia
Published online first in 10 July 2013Research supports the association between
mindfulness, emotion regulation, stress reduction, and
interpersonal/relational wellness. The present study evaluated
the potential effect of mindfulness on some indicators of psychological
imbalance such as low self-differentiation and
alexithymia. In this cross-sectional study, a sample of 168 undergraduates
(72 % women) completed measures of perceived
mindfulness (CAMS-R and PHLMS), self-differentiation (SIPI),
and alexithymia (TAS-20). Results revealed positive
correlations between the different dimensions of mindfulness
and negative correlations between those dimensions, selfdifferentiation,
and alexithymia. The dimensions of quality of
mindfulness and acceptance were mediators in the relationship
between self-differentiation and alexithymia. A nonsignificant
interaction between gender and alexithymia was found. All
mindfulness dimensions, but self-differentiation, contributed
to explain the allocation of the non-alexithymic group. These
results indicate that mindfulness seems to be a construct with
great therapeutic and research potential at different levels,
suggesting that some aspects of mindfulness seem to promote
a better self-differentiation and prevent alexithymia
A Frameshift in CSF2RB Predominant Among Ashkenazi Jews Increases Risk for Crohn's Disease and Reduces Monocyte Signaling via GMCSF
BACKGROUND & AIMS: Crohn's disease (CD) has the highest prevalence in Ashkenazi Jewish populations. We sought to identify rare, CD-associated frameshift variants of high functional and statistical effects. METHODS: We performed exome-sequencing and array-based genotype analyses of 1477 Ashkenazi Jewish individuals with CD and 2614 Ashkenazi Jewish individuals without CD (controls). To validate our findings, we performed genotype analyses of an additional 1515 CD cases and 7052 controls for frameshift mutations in the colony stimulating factor 2 receptor beta common subunit gene (CSF2RB). Intestinal tissues and blood samples were collected from patients with CD; lamina propria leukocytes were isolated and expression of CSF2RB and GMCSF-responsive cells were defined by mass cytometry (CyTOF analysis). Variants of CSF2RB were transfected into HEK293 cells and expression and functions of gene products were compared. RESULTS: In the discovery cohort, we associated CD with a frameshift mutation in CSF2RB (P=8.52x10-4); the finding was validated in the replication cohort (combined P=3.42x10-6). Incubation of intestinal lamina propria leukocytes with GMCSF resulted in high levels of phosphorylation of STAT5 and lesser increases in phosphorylation of ERK and AKT. Cells co-transfected with full-length and mutant forms of CSF2RB had reduced pSTAT5 following stimulation with GMCSF, compared to cells transfected with control CSF2RB, indicating a dominant negative effect of the mutant gene. Monocytes from patients with CD who were heterozygous for the frameshift mutation (6% of CD cases analyzed) had reduced responses to GMCSF and markedly decreased activity of aldehyde dehydrogenase; activity of this enzyme has been associated with immune tolerance. CONCLUSIONS: In a genetic analysis of Ashkenazi Jewish individuals, we associated CD with a frameshift mutation in CSF2RB. Intestinal monocytes from carriers of this mutation had reduced responses to GMCSF, providing an additional mechanism for alterations to the innate immune response in individuals with CD
- …
