2,488 research outputs found
A parametric level-set method for partially discrete tomography
This paper introduces a parametric level-set method for tomographic
reconstruction of partially discrete images. Such images consist of a
continuously varying background and an anomaly with a constant (known)
grey-value. We represent the geometry of the anomaly using a level-set
function, which we represent using radial basis functions. We pose the
reconstruction problem as a bi-level optimization problem in terms of the
background and coefficients for the level-set function. To constrain the
background reconstruction we impose smoothness through Tikhonov regularization.
The bi-level optimization problem is solved in an alternating fashion; in each
iteration we first reconstruct the background and consequently update the
level-set function. We test our method on numerical phantoms and show that we
can successfully reconstruct the geometry of the anomaly, even from limited
data. On these phantoms, our method outperforms Total Variation reconstruction,
DART and P-DART.Comment: Paper submitted to 20th International Conference on Discrete Geometry
for Computer Imager
The Mechanisms of Codon Reassignments in Mitochondrial Genetic Codes
Many cases of non-standard genetic codes are known in mitochondrial genomes.
We carry out analysis of phylogeny and codon usage of organisms for which the
complete mitochondrial genome is available, and we determine the most likely
mechanism for codon reassignment in each case. Reassignment events can be
classified according to the gain-loss framework. The gain represents the
appearance of a new tRNA for the reassigned codon or the change of an existing
tRNA such that it gains the ability to pair with the codon. The loss represents
the deletion of a tRNA or the change in a tRNA so that it no longer translates
the codon. One possible mechanism is Codon Disappearance, where the codon
disappears from the genome prior to the gain and loss events. In the
alternative mechanisms the codon does not disappear. In the Unassigned Codon
mechanism, the loss occurs first, whereas in the Ambiguous Intermediate
mechanism, the gain occurs first. Codon usage analysis gives clear evidence of
cases where the codon disappeared at the point of the reassignment and also
cases where it did not disappear. Codon disappearance is the probable
explanation for stop to sense reassignments and a small number of reassignments
of sense codons. However, the majority of sense to sense reassignments cannot
be explained by codon disappearance. In the latter cases, by analysis of the
presence or absence of tRNAs in the genome and of the changes in tRNA
sequences, it is sometimes possible to distinguish between the Unassigned Codon
and Ambiguous Intermediate mechanisms. We emphasize that not all reassignments
follow the same scenario and that it is necessary to consider the details of
each case carefully.Comment: 53 pages (45 pages, including 4 figures + 8 pages of supplementary
information). To appear in J.Mol.Evo
Dasatinib inhibits CXCR4 signaling in chronic lymphocytic leukaemia cells and impairs migration towards CXCL12
Chemokines and their ligands play a critical role in enabling chronic lymphocytic leukaemia (CLL) cells access to protective microenvironmental niches within tissues, ultimately resulting in chemoresistance and relapse: disruption of these signaling pathways has become a novel therapeutic approach in CLL. The tyrosine kinase inhibitor dasatinib inhibits migration of several cell lines from solid-organ tumours, but effects on CLL cells have not been reported. We studied the effect of clinically achievable concentrations of dasatinib on signaling induced by the chemokine CXCL12 through its' receptor CXCR4, which is highly expressed on CLL cells. Dasatinib pre-treatment inhibited Akt and ERK phosphorylation in CLL cells upon stimulation with CXCL12. Dasatinib also significantly diminished the rapid increase in actin polymerisation observed in CLL cells following CXCL12 stimulation. Moreover, the drug significantly inhibited chemotaxis in a transwell assay, and reduced the percentage of cells able to migrate beneath a CXCL12-expressing murine stromal cell line. Dasatinib also abrogated the anti-apoptotic effect of prolonged CXCL12 stimulation on cultured CLL cells. These data suggest that dasatinib, akin to other small molecule kinase inhibitors targeting the B-cell receptor signaling pathway, may redistribute CLL cells from protective tissue niches to the peripheral blood, and support the investigation of dasatinib in combination strategies
Hypoxia-regulated glucose transporter Glut-1 may influence chemosensitivity to some alkylating agents: Results of EORTC (First Translational Award) study of the relevance of tumour hypoxia to the outcome of chemotherapy in human tumour-derived xenografts
Tumour hypoxia confers poor prognosis in a wide range of solid tumours, due to an increased malignancy, increased likelihood of metastasis and treatment resistance. Poorly oxygenated tumours are resistant to both radiation therapy and chemotherapy. However, although the link between radiation therapy and hypoxia is well established
in a range of clinical studies, evidence of its influence on chemotherapy response is lacking. In this study, a panel of human tumour-derived xenografts that have been characterised previously for in vivo response to a large series of anti-cancer agents, and have been found to show chemosensitivities that correlate strongly with the parent tumour, were used to address this issue. Immunohistochemistry was carried out on formalinfixed, paraffin-embedded sections of xenograft samples to detect expression of the intrinsic hypoxia marker Glut-1 and adducts of the bioreductive hypoxia marker pimonidazole. Glut-1 scores correlated significantly with T/C values for CCNU sensitivity (r=0.439, P=0.036, n=23) and showed a borderline significant correlation with dacarbazine T/C (r=0.405, P=0.076, n=20). However, there was no correlation between both Glut-1 and pimonidazole scores and T/C obtained for the bioreductive drug mitomycin C. The use of human tumour-derived xenografts offers a potentially useful way of using archival material to determine the influence of hypoxia and other tumour-microenvironmental factors on chemosensitivity without the direct use of human subjects
Parameter identification problems in the modelling of cell motility
We present a novel parameter identification algorithm for the estimation of parameters in models of cell motility using imaging data of migrating cells. Two alternative formulations of the objective functional that measures the difference between the computed and observed data are proposed and the parameter identification problem is formulated as a minimisation problem of nonlinear least squares type. A Levenberg–Marquardt based optimisation method is applied to the solution of the minimisation problem and the details of the implementation are discussed. A number of numerical experiments are presented which illustrate the robustness of the algorithm to parameter identification in the presence of large deformations and noisy data and parameter identification in three dimensional models of cell motility. An application to experimental data is also presented in which we seek to identify parameters in a model for the monopolar growth of fission yeast cells using experimental imaging data. Our numerical tests allow us to compare the method with the two different formulations of the objective functional and we conclude that the results with both objective functionals seem to agree
Annual variation in the levels of transcripts of sex-specific genes in the mantle of the common mussel, Mytilus edulis
Mytilus species are used as sentinels for the assessment of environmental health but sex or stage in the reproduction cycle is rarely considered even though both parameters are likely to influence responses to pollution. We have validated the use of a qPCR assay for sex identification and related the levels of transcripts to the reproductive cycle. A temporal study of mantle of Mytilus edulis found transcripts of male-specific vitelline coat lysin (VCL) and female-specific vitelline envelope receptor for lysin (VERL) could identify sex over a complete year. The levels of VCL/VERL were proportional to the numbers of sperm/ova and are indicative of the stage of the reproductive cycle. Maximal levels of VCL and VERL were found in February 2009 declining to minima between July - August before increasing and re-attaining a peak in February 2010. Water temperature may influence these transitions since they coincide with minimal water temperature in February and maximal temperature in August. An identical pattern of variation was found for a cryptic female-specific transcript (H5) but a very different pattern was observed for oestrogen receptor 2 (ER2). ER2 varied in a sex-specific way with male > female for most of the cycle, with a female maxima in July and a male maxima in December. Using artificially spawned animals, the transcripts for VCL, VERL and H5 were shown to be present in gametes and thus their disappearance from mantle is indicative of spawning. VCL and VERL are present at equivalent levels in February and July-August but during gametogenesis (August to January) and spawning (March to June) VCL is present at lower relative amounts than VERL. This may indicate sex-specific control mechanisms for these processes and highlight a potential pressure point leading to reduced reproductive output if environmental factors cause asynchrony to gamete maturation or release
Counting and effective rigidity in algebra and geometry
The purpose of this article is to produce effective versions of some rigidity
results in algebra and geometry. On the geometric side, we focus on the
spectrum of primitive geodesic lengths (resp., complex lengths) for arithmetic
hyperbolic 2-manifolds (resp., 3-manifolds). By work of Reid, this spectrum
determines the commensurability class of the 2-manifold (resp., 3-manifold). We
establish effective versions of these rigidity results by ensuring that, for
two incommensurable arithmetic manifolds of bounded volume, the length sets
(resp., the complex length sets) must disagree for a length that can be
explicitly bounded as a function of volume. We also prove an effective version
of a similar rigidity result established by the second author with Reid on a
surface analog of the length spectrum for hyperbolic 3-manifolds. These
effective results have corresponding algebraic analogs involving maximal
subfields and quaternion subalgebras of quaternion algebras. To prove these
effective rigidity results, we establish results on the asymptotic behavior of
certain algebraic and geometric counting functions which are of independent
interest.Comment: v.2, 39 pages. To appear in Invent. Mat
Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer
Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies
Wnt5a induces ROR1 to complex with HS1 to enhance migration of chronic lymphocytic leukemia cells.
ROR1 (receptor tyrosine kinase-like orphan receptor 1) is a conserved, oncoembryonic surface antigen expressed in chronic lymphocytic leukemia (CLL). We found that ROR1 associates with hematopoietic-lineage-cell-specific protein 1 (HS1) in freshly isolated CLL cells or in CLL cells cultured with exogenous Wnt5a. Wnt5a also induced HS1 tyrosine phosphorylation, recruitment of ARHGEF1, activation of RhoA and enhanced chemokine-directed migration; such effects could be inhibited by cirmtuzumab, a humanized anti-ROR1 mAb. We generated truncated forms of ROR1 and found its extracellular cysteine-rich domain or kringle domain was necessary for Wnt5a-induced HS1 phosphorylation. Moreover, the cytoplamic, and more specifically the proline-rich domain (PRD), of ROR1 was required for it to associate with HS1 and allow for F-actin polymerization in response to Wnt5a. Accordingly, we introduced single amino acid substitutions of proline (P) to alanine (A) in the ROR1 PRD at positions 784, 808, 826, 841 or 850 in potential SH3-binding motifs. In contrast to wild-type ROR1, or other ROR1P→︀A mutants, ROR1P(841)A had impaired capacity to recruit HS1 and ARHGEF1 to ROR1 in response to Wnt5a. Moreover, Wnt5a could not induce cells expressing ROR1P(841)A to phosphorylate HS1 or activate ARHGEF1, and was unable to enhance CLL-cell motility. Collectively, these studies indicate HS1 plays an important role in ROR1-dependent Wnt5a-enhanced chemokine-directed leukemia-cell migration
- …
