504 research outputs found

    Search for the standard model Higgs boson at LEP

    Get PDF

    High-throughput measurement of protein stability in microtiter plates

    Get PDF
    The direct determination of protein stability at high throughput has applications in proteomics, directed evolution, and formulation. Each application places different requirements on the accuracy of stability or transition midpoint determination. The measurement of protein stability by chemical denaturation has been previously performed at medium throughput and high accuracy using autotitrating fluorometers, after removal of proteins from the 96-well plate format in which they were expressed and purified. Herein we present a higher-throughput method for measuring and indexing the stability of proteins maintained within the 96-well format using a fluorescence microplate reader. Protein unfolding transitions were monitored by tryptophan fluorescence at 340 nm and assessed using bovine and equine cytochrome c (cyt c), as well as bovine serum albumin (BSA) stabilized with various amounts of palmitic acid. Two different approaches for generating unfolding curves in microtiter plates have been evaluated for their accuracy and applicability. Unfolding curves generated by the serial addition of denaturant into single wells allowed high-throughput stability screens capable of identifying protein variants with unfolding midpoint differences of 0.15 M denaturant concentration or larger. Such a method would be suitable for screening large numbers of proteins, as typically generated for directed evolution. Unfolding curves generated using one well per denaturant concentration allowed for medium-throughput stability screening and generated more accurate and precise stability values (C-1/2 +/- 0.05 M, m(G), and DeltaG(H2)O) for cyt c that are similar to values reported in literature. This method is suitable for screening the smaller numbers of proteins generated in proteomic research programmes. By using BSA stabilized with various palmitate concentrations and simple numerical indexing, it was shown that both experimental methods can successfully rank the order of protein stability. (C) 2005 Wiley Periodicals, Inc

    Conformal symmetry of the critical 3D Ising model inside a sphere

    Get PDF
    We perform Monte-Carlo simulations of the three-dimensional Ising model at the critical temperature and zero magnetic field. We simulate the system in a ball with free boundary conditions on the two dimensional spherical boundary. Our results for one and two point functions in this geometry are consistent with the predictions from the conjectured conformal symmetry of the critical Ising model.We are grateful to Slava Rychkov for useful discussions and for suggesting this work. The research leading to these results has received funding from the [European Union] Seventh Framework Programme [FP7-People-2010-IRSES] and [FP7/2007-2013] under grant agreements No 269217, 317089 and No 247252, and from the grant CERN/FP/123599/2011. Centro de Física do Porto is partially funded by the Foundation for Science and Technology of Portugal (FCT). J.V.P.L. acknowledges funding from projecto Operacional Regional do Norte, within Quadro de Referência Estratégico Nacional (QREN) and through Fundo Europeu de Desenvolvimento Regional (FEDER), Ref. NORTE-07-0124-FEDER- 00003

    Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence

    Get PDF
    Additional file 3: Figure S3. Regulation of genes of Arrhythmogenic right ventricular cardiomyopathy pathway during senescence induction in HFF strains Genes of the “Arrhythmogenic right ventricular cardiomyopathy” pathway which are significantly up- (green) and down- (red) regulated (log2 fold change >1) during irradiation induced senescence (120 h after 20 Gy irradiation) in HFF strains. Orange color signifies genes which are commonly up-regulated during both, irradiation induced and replicative senescence

    Measurement of Trilinear Gauge Couplings in e+ee^+ e^- Collisions at 161 GeV and 172 GeV

    Get PDF
    Trilinear gauge boson couplings are measured using data taken by DELPHI at 161~GeV and 172~GeV. Values for WWVWWV couplings (V=Z,γV=Z, \gamma) are determined from a study of the reactions \eeWW\ and \eeWev, using differential distributions from the WWWW final state in which one WW decays hadronically and the other leptonically, and total cross-section data from other channels. Limits are also derived on neutral ZVγZV\gamma couplings from an analysis of the reaction \eegi

    Indirect effect of neem oil on Podisus nigrispinus (Hemiptera, Pentatomidae): biology and predatory capacity

    Full text link
    This study evaluated the effects on the development and predatory capacity of Podisus nigrispinus fed on Spodoptera frugiperda that have ingested different concentrations of neem oil. The predatory capacity of Podisus nigrispinus was assessed, separating nymphs (fourth instar) and adults (males and females). The treatments consisted of S. frugiperda larvae reared in neem oil aqueous solutions (0.077, 0.359 and 0.599%), deltamethrin EC 25 (0.100%) and control arranged in a completely randomized design, with ten replicates. Insects were offered three larval densities (one, three and six), in the third or fourth instars. The predated larvae were examined at 24 and 48 hours after the beginning of the experiment. Biological parameters of Podisus nigrispinus were evaluated in groups of ten second-instar nymphs transferred to pots, in five replicates. Insects were offered 2-6 third and/or fourth-instar larvae reared in the same neem oil concentrations in a completely randomized design. The following parameters were evaluated: duration of each nymph stage (days), nymph mortality (%), weight of fifth-instar nymphs (mg), sex ratio, weight of males and females (mg) and longevity of unfed adults (days). The predatory capacity of nymphs and adults of Podisus nigrispinus was influenced by the neem oil at the concentrations of 0.359% and 0.599% in the highest density. The concentration of 0.359% lengthened the nymphal stage and the concentration of 0.599% reduced the weight of males

    Functional Interaction of Nuclear Domain 10 and Its Components with Cytomegalovirus after Infections: Cross-Species Host Cells versus Native Cells

    Get PDF
    Species-specificity is one of the major characteristics of cytomegaloviruses (CMVs) and is the primary reason for the lack of a mouse model for the direct infection of human CMV (HCMV). It has been determined that CMV cross-species infections are blocked at the post-entry level by intrinsic cellular defense mechanisms, but few details are known. It is important to explore how CMVs interact with the subnuclear structure of the cross-species host cell. In our present study, we discovered that nuclear domain 10 (ND10) of human cells was not disrupted by murine CMV (MCMV) and that the ND10 of mouse cells was not disrupted by HCMV, although the ND10-disrupting protein, immediate-early protein 1 (IE1), also colocalized with ND10 in cross-species infections. In addition, we found that the UL131-repaired HCMV strain AD169 (vDW215-BADrUL131) can infect mouse cells to produce immediate-early (IE) and early (E) proteins but that neither DNA replication nor viral particles were detectable in mouse cells. Unrepaired AD169 can express IE1 only in mouse cells. In both HCMV-infected mouse cells and MCMV-infected human cells, the knocking-down of ND10 components (PML, Daxx, and SP100) resulted in significantly increased viral-protein production. Our observations provide evidence to support our hypothesis that ND10 and ND10 components might be important defensive factors against the CMV cross-species infection

    The TolC Protein of Legionella pneumophila Plays a Major Role in Multi-Drug Resistance and the Early Steps of Host Invasion

    Get PDF
    Pneumonia associated with Iegionnaires's disease is initiated in humans after inhalation of contaminated aerosols. In the environment, Legionella pneumophila is thought to survive and multiply as an intracellular parasite within free-living amoeba. In the genome of L. pneumophila Lens, we identified a unique gene, tolC, encoding a protein that is highly homologous to the outer membrane protein TolC of Escherichia coli. Deletion of tolC by allelic exchange in L. pneumophila caused increased sensitivity to various drugs. The complementation of the tolC mutation in trans restored drug resistance, indicating that TolC is involved in multi-drug efflux machinery. In addition, deletion of tolC caused a significant attenuation of virulence towards both amoebae and macrophages. Thus, the TolC protein appears to play a crucial role in virulence which could be mediated by its involvement in efflux pump mechanisms. These findings will be helpful in unraveling the pathogenic mechanisms of L. pneumophila as well as in developing new therapeutic agents affecting the efflux of toxic compounds

    Reciprocal Tripartite Interactions between the Aedes aegypti Midgut Microbiota, Innate Immune System and Dengue Virus Influences Vector Competence

    Get PDF
    Dengue virus is one of the most important arboviral pathogens and the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. It is transmitted between humans by the mosquitoes Aedes aegypti and Aedes albopictus, and at least 2.5 billion people are at daily risk of infection. During their lifecycle, mosquitoes are exposed to a variety of microbes, some of which are needed for their successful development into adulthood. However, recent studies have suggested that the adult mosquito's midgut microflora is critical in influencing the transmission of human pathogens. In this study we assessed the reciprocal interactions between the mosquito's midgut microbiota and dengue virus infection that are, to a large extent, mediated by the mosquito's innate immune system. We observed a marked decrease in susceptibility to dengue virus infection when mosquitoes harbored certain field-derived bacterial isolates in their midgut. Transcript abundance analysis of selected antimicrobial peptide genes suggested that the mosquito's microbiota elicits a basal immune activity that appears to act against dengue virus infection. Conversely, the elicitation of the mosquito immune response by dengue virus infection itself influences the microbial load of the mosquito midgut. In sum, we show that the mosquito's microbiota influences dengue virus infection of the mosquito, which in turn activates its antibacterial responses

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases
    corecore