13 research outputs found
On the enhancement of vehicle handling and energy efficiency of electric vehicles with multiple motors: the iCOMPOSE project
Electric vehicles with multiple motors allow torque-vectoring, i.e., the individual control of each powertrain torque. Torque-vectoring (TV) can provide: i) enhancement of vehicle safety and handling, via the generation of a
direct yaw moment to shape the understeer characteristics and increase yaw and sideslip damping; and ii) energy consumption reductions, via appropriate torque
allocation to each motor. The FP7 European project iCOMPOSE thoroughly addressed i) and ii). Theoretical analyses were carried out to design state-of-the art TV controllers, which were validated through: a) vehicle simulations; and b)
extensive experimental tests, which were performed at rolling road facilities and proving grounds, using a Range Rover Evoque prototype equipped with four identical on-board electric powertrains. This paper provides an overview of the TV-related contributions of iCOMPOSE
Modeling, simulation and control of a 4WD electric vehicle with in-wheel motors
A relatively new technology for the electric vehicles considers the use of brushless permanent magnet motors directly connected to the car wheels (in-wheel motors or hub motors). In order to evaluate the performance that can be obtained, a complete dynamic model of a four-wheel drive (4WD) electric vehicle equipped with four in-wheel motors is developed and a correspondent parametric simulator is implemented in Matlab/Simulink™. The simulator is also employed for designing, testing and comparing various control logics which reproduce the handling behavior of a real vehicle
Recommended from our members
Capacity Analysis of Intersections When CAVs Are Crossing in a Collaborative and Lane-Free Order
Connected and autonomous vehicles (CAVs) improve the throughput of intersections by crossing in a lane-free order as compared to a signalised crossing. However, it is challenging to quantify such an improvement because the available frameworks to analyse the capacity of the conventional intersections do not apply to the lane-free ones. This paper proposes a novel framework including a measure and an algorithm to calculate the capacity of the lane-free intersections. The results show that a lane-free crossing of CAVs increases the capacity of intersections by 127% and 36% as compared to a signalised crossing of, respectively, human-driven vehicles and CAVs. The paper also provides a sensitivity analysis indicating that, in contrast to the signalised ones, the capacity of the lane-free intersections improves by an increase in the initial speed, maximum permissible speed and acceleration of vehicles.</p
Recommended from our members
Lane-Free Crossing of CAVs through Intersections as a Minimum-Time Optimal Control Problem
Unlike conventional cars, connected and autonomous vehicles (CAVs) can cross intersections in a lane-free order and utilise the whole area of intersections. This paper presents a minimum-time optimal control problem to centrally control the CAVs to simultaneously cross an intersection in the shortest possible time. Dual problem theory is employed to convexify the constraints of CAVs to avoid collision with each other and with road boundaries. The developed formulation is smooth and solvable by gradient-based algorithms. Simulation results show that the proposed strategy reduces the crossing time of intersections by an average of 52% and 54% as compared to, respectively, the state-of-the-art reservation-based and lane-free methods. Furthermore, the crossing time by the proposed strategy is fixed to a constant value for an intersection regardless of the number of CAVs.</p
A Fast and Parametric Torque Distribution Strategy for Four-Wheel-Drive Energy-Efficient Electric Vehicles
Electric vehicles (EVs) with four individually controlled drivetrains are over-actuated systems, and therefore, the total wheel torque and yaw moment demands can be realized through an infinite number of feasible wheel torque combinations. Hence, an energy-efficient torque distribution among the four drivetrains is crucial for reducing the drivetrain power losses and extending driving range. In this paper, the optimal torque distribution is formulated as the solution of a parametric optimization problem, depending on the vehicle speed. An analytical solution is provided for the case of equal drivetrains, under the experimentally confirmed hypothesis that the drivetrain power losses are strictly monotonically increasing with the torque demand. The easily implementable and computationally fast wheel torque distribution algorithm is validated by simulations and experiments on an EV demonstrator, along driving cycles and cornering maneuvers. The results show considerable energy savings compared to alternative torque distribution strategies
Recommended from our members
Analysis and Accuracy Improvement of UWB-TDoA-Based Indoor Positioning System
Positioning systems are used in a wide range of applications which require determining the position of an object in space, such as locating and tracking assets, people and goods; assisting navigation systems; and mapping. Indoor Positioning Systems (IPSs) are used where satellite and other outdoor positioning technologies lack precision or fail. Ultra-WideBand (UWB) technology is especially suitable for an IPS, as it operates under high data transfer rates over short distances and at low power densities, although signals tend to be disrupted by various objects. This paper presents a comprehensive study of the precision, failure, and accuracy of 2D IPSs based on UWB technology and a pseudo-range multilateration algorithm using Time Difference of Arrival (TDoA) signals. As a case study, the positioning of a (Formula presented.) area, four anchors (transceivers), and one tag (receiver) are considered using bitcraze’s Loco Positioning System. A Cramér–Rao Lower Bound analysis identifies the convex hull of the anchors as the region with highest precision, taking into account the anisotropic radiation pattern of the anchors’ antennas as opposed to ideal signal distributions, while bifurcation envelopes containing the anchors are defined to bound the regions in which the IPS is predicted to fail. This allows the formulation of a so-called flyable area, defined as the intersection between the convex hull and the region outside the bifurcation envelopes. Finally, the static bias is measured after applying a built-in Extended Kalman Filter (EKF) and mapped using a Radial Basis Function Network (RBFN). A debiasing filter is then developed to improve the accuracy. Findings and developments are experimentally validated, with the IPS observed to fail near the anchors, precision around (Formula presented.), and accuracy improved by about (Formula presented.) for static and (Formula presented.) for dynamic measurements, on average.</p
Torque Distribution Strategies for Energy-Efficient Electric Vehicles with Multiple Drivetrains
The paper discusses novel computationally efficient torque distribution strategies for electric vehicles with individually controlled drivetrains, aimed at minimizing the overall power losses while providing the required level of wheel torque and yaw moment. Analytical solutions of the torque control allocation problem are derived and effects of load transfers due to moderate driving/braking and cornering conditions are studied and discussed in detail. Influences of different drivetrain characteristics on the front and rear axles are described. The results of the analytically-derived algorithm are contrasted with those from two other control allocation strategies, based on the off-line numerical solution of more detailed formulations of the control allocation problem (i.e., a multi-parametric non-linear programming problem). The solutions of the control allocation problem are experimentally validated along multiple driving cycles and in steady-state cornering, on an electric vehicle with four identical drivetrains. The experiments show that the computationally efficient algorithms represent a very good compromise between low energy consumption and controller complexity
Recommended from our members
Electrified Powertrain with Multiple Planetary Gears and Corresponding Energy Management Strategy
Modern hybrid electric vehicles (HEVs) like the fourth generation of Toyota Prius incorporate multiple planetary gears (PG) to interconnect various power components. Previous studies reported that increasing the number of planetary gears from one to two reduces energy consumption. However, these studies did not compare one PG and two PGs topologies at their optimal operation. Moreover, the size of the powertrain components are not the same and hence the source of reduction in energy consumption is not clear. This paper investigates the effect of the number of planetary gears on energy consumption under optimal operation of the powertrain components. The powertrains with one and two PGs are considered and an optimal simultaneous torque distribution and mode selection strategy is proposed. The proposed energy management strategy (EMS) optimally distributes torque demands amongst the power components whilst also controlling clutches (i.e., mode selection). Results show that increasing from one to two PGs reduces energy consumption by 4%.</p
