164 research outputs found
B cell and/or autoantibody deficiency do not prevent neuropsychiatric disease in murine systemic lupus erythematosus
Background: Neuropsychiatric lupus (NPSLE) can be one of the earliest clinical manifestations in human lupus. However, its mechanisms are not fully understood. In lupus, a compromised blood-brain barrier may allow for the passage of circulating autoantibodies into the brain, where they can induce neuropsychiatric abnormalities including depression-like behavior and cognitive abnormalities. The purpose of this study was to determine the role of B cells and/or autoantibodies in the pathogenesis of murine NPSLE. Methods: We evaluated neuropsychiatric manifestations, brain pathology, and cytokine expression in constitutively (JhD/MRL/lpr) and conditionally (hCD20-DTA/MRL/lpr, inducible by tamoxifen) B cell-depleted mice as compared to MRL/lpr lupus mice. Results: We found that autoantibody levels were negligible (JhD/MRL/lpr) or significantly reduced (hCD20-DTA/MRL/lpr) in the serum and cerebrospinal fluid, respectively. Nevertheless, both JhD/MRL/lpr and hCD20-DTA/MRL/lpr mice showed profound depression-like behavior, which was no different from MRL/lpr mice. Cognitive deficits were also observed in both JhD/MRL/lpr and hCD20-DTA/MRL/lpr mice, similar to those exhibited by MRL/lpr mice. Furthermore, although some differences were dependent on the timing of depletion, central features of NPSLE in the MRL/lpr strain including increased blood-brain barrier permeability, brain cell apoptosis, and upregulated cytokine expression persisted in B cell-deficient and B cell-depleted mice. Conclusions: Our study surprisingly found that B cells and/or autoantibodies are not required for key features of neuropsychiatric disease in murine NPSLE
Outer membrane protein folding from an energy landscape perspective
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OFMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding
Differentiated transplant derived airway epithelial cell cytokine secretion is not regulated by cyclosporine
<p>Abstract</p> <p>Background</p> <p>While lung transplantation is an increasingly utilized therapy for advanced lung diseases, chronic rejection in the form of Bronchiolitis Obliterans Syndrome (BOS) continues to result in significant allograft dysfunction and patient mortality. Despite correlation of clinical events with eventual development of BOS, the causative pathophysiology remains unknown. Airway epithelial cells within the region of inflammation and fibrosis associated with BOS may have a participatory role.</p> <p>Methods</p> <p>Transplant derived airway epithelial cells differentiated in air liquid interface culture were treated with IL-1β and/or cyclosporine, after which secretion of cytokines and growth factor and gene expression for markers of epithelial to mesenchymal transition were analyzed.</p> <p>Results</p> <p>Secretion of IL-6, IL-8, and TNF-α, but not TGF-β1, was increased by IL-1β stimulation. In contrast to previous studies using epithelial cells grown in submersion culture, treatment of differentiated cells in ALI culture with cyclosporine did not elicit cytokine or growth factor secretion, and did not alter IL-6, IL-8, or TNF-α production in response to IL-1β treatment. Neither IL-1β nor cyclosporine elicited expression of markers of the epithelial to mesenchymal transition E-cadherin, EDN-fibronectin, and α-smooth muscle actin.</p> <p>Conclusion</p> <p>Transplant derived differentiated airway epithelial cell IL-6, IL-8, and TNF-α secretion is not regulated by cyclosporine <it>in vitro</it>; these cells thus may participate in local inflammatory responses in the setting of immunosuppression. Further, treatment with IL-1β did not elicit gene expression of markers of epithelial to mesenchymal transition. These data present a model of differentiated airway epithelial cells that may be useful in understanding epithelial participation in airway inflammation and allograft rejection in lung transplantation.</p
HybriFree: a robust and rapid method for the development of monoclonal antibodies from different host species
Protease Activity Increases in Plasma, Peritoneal Fluid, and Vital Organs after Hemorrhagic Shock in Rats
Hemorrhagic shock (HS) is associated with high mortality. A severe decrease in blood pressure causes the intestine, a major site of digestive enzymes, to become permeable – possibly releasing those enzymes into the circulation and peritoneal space, where they may in turn activate other enzymes, e.g. matrix metalloproteinases (MMPs). If uncontrolled, these enzymes may result in pathophysiologic cleavage of receptors or plasma proteins. Our first objective was to determine, in compartments outside of the intestine (plasma, peritoneal fluid, brain, heart, liver, and lung) protease activities and select protease concentrations after hemorrhagic shock (2 hours ischemia, 2 hours reperfusion). Our second objective was to determine whether inhibition of proteases in the intestinal lumen with a serine protease inhibitor (ANGD), a process that improves survival after shock in rats, reduces the protease activities distant from the intestine. To determine the protease activity, plasma and peritoneal fluid were incubated with small peptide substrates for trypsin-, chymotrypsin-, and elastase-like activities or with casein, a substrate cleaved by multiple proteases. Gelatinase activities were determined by gelatin gel zymography and a specific MMP-9 substrate. Immunoblotting was used to confirm elevated pancreatic trypsin in plasma, peritoneal fluid, and lung and MMP-9 concentrations in all samples after hemorrhagic shock. Caseinolytic, trypsin-, chymotrypsin-, elastase-like, and MMP-9 activities were all significantly (p<0.05) upregulated after hemorrhagic shock regardless of enteral pretreatment with ANGD. Pancreatic trypsin was detected by immunoblot in the plasma, peritoneal space, and lungs after hemorrhagic shock. MMP-9 concentrations and activities were significantly upregulated after hemorrhagic shock in plasma, peritoneal fluid, heart, liver, and lung. These results indicate that protease activities, including that of trypsin, increase in sites distant from the intestine after hemorrhagic shock. Proteases, including pancreatic proteases, may be shock mediators and potential targets for therapy in shock
TRPA1 Is a Polyunsaturated Fatty Acid Sensor in Mammals
Fatty acids can act as important signaling molecules regulating diverse physiological processes. Our understanding, however, of fatty acid signaling mechanisms and receptor targets remains incomplete. Here we show that Transient Receptor Potential Ankyrin 1 (TRPA1), a cation channel expressed in sensory neurons and gut tissues, functions as a sensor of polyunsaturated fatty acids (PUFAs) in vitro and in vivo. PUFAs, containing at least 18 carbon atoms and three unsaturated bonds, activate TRPA1 to excite primary sensory neurons and enteroendocrine cells. Moreover, behavioral aversion to PUFAs is absent in TRPA1-null mice. Further, sustained or repeated agonism with PUFAs leads to TRPA1 desensitization. PUFAs activate TRPA1 non-covalently and independently of known ligand binding domains located in the N-terminus and 5th transmembrane region. PUFA sensitivity is restricted to mammalian (rodent and human) TRPA1 channels, as the drosophila and zebrafish TRPA1 orthologs do not respond to DHA. We propose that PUFA-sensing by mammalian TRPA1 may regulate pain and gastrointestinal functions
B cell and/or autoantibody deficiency do not prevent neuropsychiatric disease in murine systemic lupus erythematosus
Allosteric activation of an ion channel triggered by modification of mechanosensitive nano-pockets
Lipid availability within transmembrane nano-pockets of ion channels is linked with mechanosensation. However, the effect of hindering lipid-chain penetration into nano-pockets on channel structure has not been demonstrated. Here we identify nano-pockets on the large conductance mechanosensitive channel MscL, the high-pressure threshold channel. We restrict lipid-chain access to the nano-pockets by mutagenesis and sulfhydryl modification, and monitor channel conformation by PELDOR/DEER spectroscopy. For a single site located at the entrance of the nano-pockets and distal to the channel pore we generate an allosteric response in the absence of tension. Single-channel recordings reveal a significant decrease in the pressure activation threshold of the modified channel and a sub-conducting state in the absence of applied tension. Threshold is restored to wild-type levels upon reduction of the sulfhydryl modification. The modification associated with the conformational change restricts lipid access to the nano-pocket, interrupting the contact between the membrane and the channel that mediates mechanosensitivity
Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study
We aimed to determine the impact of pre-operative isolation on postoperative pulmonary complications after elective surgery during the global SARS-CoV-2 pandemic. We performed an international prospective cohort study including patients undergoing elective surgery in October 2020. Isolation was defined as the period before surgery during which patients did not leave their house or receive visitors from outside their household. The primary outcome was postoperative pulmonary complications, adjusted in multivariable models for measured confounders. Pre-defined sub-group analyses were performed for the primary outcome. A total of 96,454 patients from 114 countries were included and overall, 26,948 (27.9%) patients isolated before surgery. Postoperative pulmonary complications were recorded in 1947 (2.0%) patients of which 227 (11.7%) were associated with SARS-CoV-2 infection. Patients who isolated pre-operatively were older, had more respiratory comorbidities and were more commonly from areas of high SARS-CoV-2 incidence and high-income countries. Although the overall rates of postoperative pulmonary complications were similar in those that isolated and those that did not (2.1% vs 2.0%, respectively), isolation was associated with higher rates of postoperative pulmonary complications after adjustment (adjusted OR 1.20, 95%CI 1.05-1.36, p = 0.005). Sensitivity analyses revealed no further differences when patients were categorised by: pre-operative testing; use of COVID-19-free pathways; or community SARS-CoV-2 prevalence. The rate of postoperative pulmonary complications increased with periods of isolation longer than 3 days, with an OR (95%CI) at 4-7 days or ≥ 8 days of 1.25 (1.04-1.48), p = 0.015 and 1.31 (1.11-1.55), p = 0.001, respectively. Isolation before elective surgery might be associated with a small but clinically important increased risk of postoperative pulmonary complications. Longer periods of isolation showed no reduction in the risk of postoperative pulmonary complications. These findings have significant implications for global provision of elective surgical care
- …
