16 research outputs found

    Neuregulinas 1-alfa e 1-beta na regeneração de nervos periféricos Neuregulins 1-alpha and 1-beta on the regeneration the peripheral nerves

    Get PDF
    OBJETIVO: Avaliar o efeito das neuregulinas 1-alfa e 1-beta na regeneração de nervos ciáticos de camundongos C57BL/6J, adultos, machos, através da técnica de tubulização. MÉTODOS: Utilizaram-se 18 animais, divididos em 3 grupos, implantando-se prótese de polietileno em falhas de 4,0 mm no nervo ciático esquerdo: grupo 1 contendo apenas colágeno purificado (Vitrogen®); grupo 2, colágeno associado a neuregulina 1-alfa; grupo 3 com colágeno e neuregulina 1-beta. O grupo controle foi formado por 6 segmentos de nervos ciáticos direitos. Após 4 semanas, os animais foram sacrificados; extraiu-se segmento do ponto médio do nervo regenerado no interior das próteses, padronizaram-se cortes histológicos e confecção das lâminas para análise histomorfométrica. Confrontaram-se os resultados estatisticamente. RESULTADOS: Os animais tratados com neuregulinas tiveram maior número de axônios mielinizados, com diferença estatisticamente significante quando comparados ao grupo colágeno. Não houve diferença estatística entre os grupos de neuregulinas 1-alfa e 1-beta. CONCLUSÃO: a adição de neuregulinas proporcionou aumento significativo do número de fibras mielinizadas.<br>OBJECTIVE: to evaluate the effect of the neuregulins 1-alpha and 1-beta on the regeneration the sciatic nerves of male adult C57BL/6J mice, using the tubulization technique. METHODS: eighteen animals were used, divided into three groups. A polyethylene prosthesis was implanted in a 4.0 mm defect of the left sciatic nerve, as follows: group 1 containing only purified collagen (Vitrogen®); group 2, collagen with neuregulin 1-alpha; group 3, collagen with neuregulin 1-beta. The control group consisted of six segments of right sciatic nerves. After four weeks, the animals were sacrificed. A segment from the midpoint of the nerve regenerated inside the prostheses was extracted; histological sections were standardized, and slides were made up for histomorphometric analysis. RESULTS: the results were statistically compared using the Tukey multiple comparisons test and the Student's t test. The animals treated with neuregulins had greater numbers of myelinized axons, with a statistically significant difference in relation to the collagen-only group. There was no statistical difference between the neuregulin 1-alpha and 1-beta groups. CONCLUSION: the addition of neuregulins provided a significant increase in the number of myelinized fibers

    Stem Cell Therapy and Curcumin Synergistically Enhance Recovery from Spinal Cord Injury

    Get PDF
    Acute traumatic spinal cord injury (SCI) is marked by the enhanced production of local cytokines and pro-inflammatory substances that induce gliosis and prevent reinnervation. The transplantation of stem cells is a promising treatment strategy for SCI. In order to facilitate functional recovery, we employed stem cell therapy alone or in combination with curcumin, a naturally-occurring anti-inflammatory component of turmeric (Curcuma longa), which potently inhibits NF-κB. Spinal cord contusion following laminectomy (T9–10) was performed using a weight drop apparatus (10 g over a 12.5 or 25 mm distance, representing moderate or severe SCI, respectively) in Sprague-Dawley rats. Neural stem cells (NSC) were isolated from subventricular zone (SVZ) and transplanted at the site of injury with or without curcumin treatment. Functional recovery was assessed by BBB score and body weight gain measured up to 6 weeks following SCI. At the conclusion of the study, the mass of soleus muscle was correlated with BBB score and body weight. Stem cell therapy improved recovery from moderate SCI, however, it had a limited effect on recovery after severe SCI. Curcumin stimulated NSC proliferation in vitro, and in combination with stem cell therapy, induced profound recovery from severe SCI as evidenced by improved functional locomotor recovery, increased body weight, and soleus muscle mass. These findings demonstrate that curcumin in conjunction with stem cell therapy synergistically improves recovery from severe SCI. Furthermore, our results indicate that the effect of curcumin extends beyond its known anti-inflammatory properties to the regulation of stem cell proliferation
    corecore