163 research outputs found
Prime movers : mechanochemistry of mitotic kinesins
Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
Pharmacokinetic Characteristics, Pharmacodynamic Effect and In Vivo Antiviral Efficacy of Liver-Targeted Interferon Alpha
Work carried out by JM was funded by the
National Institutes of Health (NIH). NIH contract
number is HHSN272201000039I/HHSN27200001/
A19
Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer
BACKGROUND: Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer. METHODS: In a population of 15,596 epithelial ovarian cancer (EOC) cases and 23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway genes with odds of ovarian cancer and tested pathway and gene-level associations, overall and by histotype, for the 25 genes, using the admixture likelihood (AML) method. The most significant single SNP associations were tested for correlation with expression levels in 44 ovarian cancer patients. RESULTS: The most significant global associations for all genes in the pathway were seen in endometrioid (p = 0.082) and clear cell (p = 0.083), with the most significant gene level association seen with TGFBR2 (p = 0.001) and clear cell EOC. Gene associations with histotypes at p < 0.05 included: IL12 (p = 0.005 and p = 0.008, serous and high-grade serous, respectively), IL8RA (p = 0.035, endometrioid and mucinous), LGALS1 (p = 0.03, mucinous), STAT5B (p = 0.022, clear cell), TGFBR1 (p = 0.021 endometrioid) and TGFBR2 (p = 0.017 and p = 0.025, endometrioid and mucinous, respectively). CONCLUSIONS: Common inherited gene variation in Treg cell pathways shows some evidence of germline genetic contribution to odds of EOC that varies by histologic subtype and may be associated with mRNA expression of immune-complex receptor in EOC patients
The Trans-Pacific Partnership Agreement and health: few gains, some losses, many risks
Bayesian Computation with Intractable Likelihoods
This article surveys computational methods for posterior inference with
intractable likelihoods, that is where the likelihood function is unavailable
in closed form, or where evaluation of the likelihood is infeasible. We review
recent developments in pseudo-marginal methods, approximate Bayesian
computation (ABC), the exchange algorithm, thermodynamic integration, and
composite likelihood, paying particular attention to advancements in
scalability for large datasets. We also mention R and MATLAB source code for
implementations of these algorithms, where they are available.Comment: arXiv admin note: text overlap with arXiv:1503.0806
Tocolytic effect of a selective FP receptor antagonist in rodent models reveals an innovative approach to the treatment of preterm labor
<p>Abstract</p> <p>Background</p> <p>Management of preterm labor by tocolysis remains an unmet medical need. Prostaglandins play a major role in regulation of uterine activity and in molecular mechanisms of human labor and parturition. There is some circumstantial evidence that prostaglandin F2α by action through the prostaglandin receptor subtype FP is effective in key events during labor uterine contraction, rupture of membranes and cervical dilation. This role of FP is briefly reviewed. In this study, we tested the hypothesis that an orally active and selective FP antagonist may arrest labor and delay parturition in animal models.</p> <p>Methods</p> <p>We examined the effects of a small molecule selective antagonist of the FP receptor (AS604872) in inhibition of spontaneous uterine contraction in pregnant rat near term. We tested AS604872 for its ability to delay preterm birth in a mouse model in which the anti-progestin agent RU486 triggered parturition.</p> <p>Results</p> <p>By oral or intravenous dosing AS604872 reduced markedly and dose-dependently the spontaneous uterine contractions in late-term pregnant rats at gestational days 19–21. In pregnant mice, AS604872 delayed the preterm birth caused by RU486 administration. The effect was dose-dependent with a significant increase in the mean delivery time of 16 and 33 hours at oral doses of 30 mg/kg and 100 mg/kg, respectively, in the case of labor triggered at gestational day 14. In both models AS604872 appeared more effective than the β-agonist ritodrine.</p> <p>Conclusion</p> <p>The tocolytic activity displayed by a selective FP receptor antagonist supports a key role for the FP receptor in the pathophysiology of premature birth and demonstrates the therapeutic potential of an FP antagonist for the treatment of preterm labor cases in which uterine hyperactivity plays a dominant role.</p
Using systems science to understand the determinants of inequities in healthy eating
Introduction: Systems thinking has emerged in recent years as a promising approach to understanding and acting on the prevention and amelioration of non-communicable disease. However, the evidence on inequities in non-communicable diseases and their risks factors, particularly diet, has not been examined from a systems perspective. We report on an approach to developing a system oriented policy actor perspective on the multiple causes of inequities in healthy eating. Methods: Collaborative conceptual modelling workshops were held in 2015 with an expert group of representatives from government, non-government health organisations and academia in Australia. The expert group built a systems model using a system dynamics theoretical perspective. The model developed from individual mind maps to pair blended maps, before being finalised as a causal loop diagram. Results: The work of the expert stakeholders generated a comprehensive causal loop diagram of the determinants of inequity in healthy eating (the HE2Diagram). This complex dynamic system has seven sub-systems: (1) food supply and environment; (2) transport; (3) housing and the built environment; (4) employment; (5) social protection; (6) health literacy; and (7) food preferences. Discussion: The HE2causal loop diagram illustrates the complexity of determinants of inequities in healthy eating. This approach, both the process of construction and the final visualisation, can provide the basis for planning the prevention and amelioration of inequities in healthy eating that engages with multiple levels of causes and existing policies and programs
Spatial trend, environmental and socioeconomic factors associated with malaria prevalence in Chennai
Expression of RHOGTPase regulators in human myometrium
<p>Abstract</p> <p>Background</p> <p>RHOGTPases play a significant role in modulating myometrial contractility in uterine smooth muscle. They are regulated by at least three families of proteins, RHO guanine nucleotide exchange factors (RHOGEFs), RHOGTPase-activating proteins (RHOGAPs) and RHO guanine nucleotide inhibitors (RHOGDIs). RHOGEFs activate RHOGTPases from the inactive GDP-bound to the active GTP-bound form. RHOGAPs deactivate RHOGTPases by accelerating the intrinsic GTPase activity of the RHOGTPases, converting them from the active to the inactive form. RHOGDIs bind to GDP-bound RHOGTPases and sequester them in the cytosol, thereby inhibiting their activity. Ezrin-Radixin-Moesin (ERM) proteins regulate the cortical actin cytoskeleton, and an ERM protein, moesin (MSN), is activated by and can also activate RHOGTPases.</p> <p>Methods</p> <p>We therefore investigated the expression of various RHOGEFs, RHOGAPs, a RHOGDI and MSN in human myometrium, by semi-quantitative reverse transcription PCR, real-time fluorescence RT-PCR, western blotting and immunofluorescence microscopy. Expression of these molecules was also examined in myometrial smooth muscle cells.</p> <p>Results</p> <p>ARHGEF1, ARHGEF11, ARHGEF12, ARHGAP5, ARHGAP24, ARHGDIA and MSN mRNA and protein expression was confirmed in human myometrium at term pregnancy, at labour and in the non-pregnant state. Furthermore, their expression was detected in myometrial smooth muscle cells. It was determined that ARHGAP24 mRNA expression significantly increased at labour in comparison to the non-labour state.</p> <p>Conclusion</p> <p>This study demonstrated for the first time the expression of the RHOGTPase regulators ARHGEF1, ARHGEF11, ARHGEF12, ARHGAP5, ARHGAP24, ARHGDIA and MSN in human myometrium, at term pregnancy, at labour, in the non-pregnant state and also in myometrial smooth muscle cells. ARHGAP24 mRNA expression significantly increased at labour in comparison to the non-labouring state. Further investigation of these molecules may enable us to further our knowledge of RHOGTPase regulation in human myometrium during pregnancy and labour.</p
Interaction between Education and Household Wealth on the Risk of Obesity in Women in Egypt
Obesity is a growing problem in lower income countries particularly among women. There are few studies exploring individual socioeconomic status indicators in depth. This study examines the interaction of education and wealth in relation to obesity, hypothesising that education protects against the obesogenic effect of wealth
- …
