14 research outputs found
Cessation of anti-VLA-4 therapy in a focal rat model of multiple sclerosis causes an increase in neuroinflammation
BackgroundPositron emission tomography (PET) can be used for in vivo evaluation of the pathology associated with multiple sclerosis. We investigated the use of longitudinal PET imaging and the 18-kDa translocator protein (TSPO) binding radioligand [F-18]GE-180 to detect changes in a chronic multiple sclerosis-like focal delayed-type hypersensitivity experimental autoimmune encephalomyelitis (fDTH-EAE) rat model during and after anti-VLA-4 monoclonal antibody (mAb) treatment. Thirty days after lesion activation, fDTH-EAE rats were treated with the anti-VLA-4 mAb (n=4) or a control mAb (n=4; 5mg/kg, every third day, subcutaneously) for 31days. Animals were imaged with [F-18]GE-180 on days 30, 44, 65, 86 and 142. Another group of animals (n=4) was used for visualisation the microglia with Iba-1 at day 44 after a 2-week treatment period.ResultsAfter a 2-week treatment period on day 44, there was a declining trend (p=0.067) in [F-18]GE-180-binding in the anti-VLA-4 mAb-treated animals versus controls. However, cessation of treatment for 4days after a 31-day treatment period increased [F-18]GE-180 binding in animals treated with anti-VLA-4 mAb compared to the control group (p=0.0003). There was no difference between the groups in TSPO binding by day 142.ConclusionsThese results demonstrated that cessation of anti-VLA-4 mAb treatment for 4days caused a transient rebound increase in neuroinflammation. This highlights the usefulness of serial TSPO imaging in the fDTH-EAE model to better understand the rebound phenomenon
Two weeks of moderate-intensity continuous training, but not high-intensity interval training, increases insulin-stimulated intestinal glucose uptake
Similar to muscles, the intestine is also insulin resistant in obese subjects and subjects with impaired glucose tolerance. Exercise training improves muscle insulin sensitivity, but its effects on intestinal metabolism are not known. We studied the effects of high intensity interval training (HIIT) and moderate intensity continuous training (MICT) on intestinal glucose and free fatty acid uptake from circulation in humans. Twenty-eight healthy middle-aged sedentary men were randomized for two weeks of HIIT or MICT. Intestinal insulin-stimulated glucose uptake and fasting free fatty acid uptake from circulation were measured using positron emission tomography and [18F]FDG and [18F]FTHA. In addition, effects of HIIT and MICT on intestinal Glut2 and CD36 protein expression were studied in rats. Training improved aerobic capacity (p=0.001) and whole-body insulin sensitivity (p=0.04), but not differently between HIIT and MICT. Insulin-stimulated glucose uptake increased only after the MICT in the colon [HIIT=0%; MICT=37%] (p=0.02 for time*training) and tended to increase in the jejunum [HIIT=-4%; MICT=13%] (p=0.08 for time*training). Fasting free fatty acid uptake decreased in the duodenum in both groups [HIIT=-6%; MICT=-48%] (p=0.001 time) and tended to decrease in the colon in the MICT group [HIIT=0%; MICT=-38%] (p=0.08 for time*training). In rats, both training groups had higher Glut2 and CD36 expression compared to control animals. This study shows that already two weeks of MICT enhances insulin-stimulated glucose uptake while both training modes reduce fasting free fatty acid uptake in the intestine in healthy middle-aged men, providing an additional mechanism by which exercise training can improve whole body metabolism.</p
S-[F-18] THK-5117-PET and [C-11] PIB-PET Imaging in Idiopathic Normal Pressure Hydrocephalus in Relation to Confirmed Amyloid-beta Plaques and Tau in Brain Biopsies
BACKGROUND:
Detection of pathological tau aggregates could facilitate clinical diagnosis of Alzheimer’s disease (AD) and monitor drug effects in clinical trials. S-[18F]THK-5117 could be a potential tracer to detect pathological tau deposits in brain. However, no previous study have correlated S-[18F]THK-5117 uptake in PET with brain biopsy verified tau pathology in vivo.
OBJECTIVE:
Here we aim to evaluate the association between cerebrospinal fluid (CSF) AD biomarkers, S-[18F]THK-5117, and [11C]PIB PET against tau and amyloid lesions in brain biopsy.
METHODS:
Fourteen patients with idiopathic normal pressure hydrocephalus (iNPH) with previous shunt surgery including right frontal cortical brain biopsy and CSF Aβ1 - 42, total tau, and P-tau181 measures, underwent brain MRI, [11C]PIB PET, and S-[18F]THK-5117 PET imaging.
RESULTS:
Seven patients had amyloid-β (Aβ, 4G8) plaques, two both Aβ and phosphorylated tau (Pτ, AT8) and one only Pτ in biopsy. As expected, increased brain biopsy Aβ was well associated with higher [11C]PIB uptake in PET. However, S-[18F]THK-5117 uptake did not show any statistically significant correlation with either brain biopsy Pτ or CSF P-tau181 or total tau.
CONCLUSION:
S-[18F]THK-5117 lacked clear association with neuropathologically verified tau pathology in brain biopsy probably, at least partially, due to off-target binding. Further studies with larger samples of patients with different tau tracers are urgently needed. The detection of simultaneous Aβ and tau pathology in iNPH is important since that may indicate poorer and especially shorter response for CSF shunt surgery compared with no pathology
Endogenous laminin is required for human airway smooth muscle cell maturation
BACKGROUND: Airway smooth muscle (ASM) contraction underlies acute bronchospasm in asthma. ASM cells can switch between a synthetic-proliferative phenotype and a contractile phenotype. While the effects of extracellular matrix (ECM) components on modulation of ASM cells to a synthetic phenotype have been reported, the role of ECM components on maturation of ASM cells to a contractile phenotype in adult lung is unclear. As both changes in ECM components and accumulation of contractile ASM are features of airway wall remodelling in asthma, we examined the role of the ECM protein, laminin, in the maturation of contractile phenotype in human ASM cells. METHODS: Human ASM cells were made senescence-resistant by stable expression of human telomerase reverse transcriptase. Maturation to a contractile phenotype was induced by 7-day serum deprivation, as assessed by immunoblotting for desmin and calponin. The role of laminin on ASM maturation was investigated by comparing the effects of exogenous laminin coated on culture plates, and of soluble laminin peptide competitors. Endogenous expression of laminin chains during ASM maturation was also measured. RESULTS: Myocyte binding to endogenously expressed laminin was required for ASM phenotype maturation, as laminin competing peptides (YIGSR or GRGDSP) significantly reduced desmin and calponin protein accumulation that otherwise occurs with prolonged serum deprivation. Coating of plastic cell culture dishes with different purified laminin preparations was not sufficient to further promote accumulation of desmin or calponin during 7-day serum deprivation. Expression of α2, β1 and γ1 laminin chains by ASM cells was specifically up-regulated during myocyte maturation, suggesting a key role for laminin-2 in the development of the contractile phenotype. CONCLUSION: While earlier reports suggest exogenously applied laminin slows the spontaneous modulation of ASM to a synthetic phenotype, we show for the first time that endogenously expressed laminin is required for ASM maturation to the contractile phenotype. As endogenously expressed laminin chains α2, β1 and γ1 are uniquely increased during myocyte maturation, these laminin chains may be key in this process. Thus, human ASM maturation appears to involve regulated endogenous expression of a select set of laminin chains that are essential for accumulation of contractile phenotype myocytes
A comparative study of two PET radioligands for the imaging of neuroinflammation in an animal model of multiple sclerosis
Dimethyl fumarate decreases short-term but not long-term inflammation in a focal EAE model of neuroinflammation
Background Dimethyl fumarate (DMF) is an oral immunomodulatory drug used in the treatment of autoimmune diseases. Here, we sought to study whether the effect of DMF can be detected using positron emission tomography (PET) targeting the 18-kDa translocator protein (TSPO) in the focal delayed-type hypersensitivity rat model of multiple sclerosis (fDTH-EAE). The rats were treated orally twice daily from lesion activation (day 0) with either vehicle (tap water with 0.08% Methocel, 200 mu L; control group n = 4 (3 after week four)) or 15 mg/kg DMF (n = 4) in 0.08% aqueous Methocel (200 mu L) for 8 weeks. The animals were imaged by PET using the TSPO tracer [F-18]GE-180 in weeks 0, 1, 2, 4, 8, and 18 following lesion activation, and the non-displaceable binding potential (BPND) was calculated. Immunohistochemical staining for Iba1, CD4, and CD8 was performed in week 18, and in separate cohorts of animals, following 2 or 4 weeks of treatment. Results Using the fDTH-EAE model, DMF reduced the [F-18]GE-180 BPND in the DMF-treated animals compared to control animals after 1 week of treatment (two-tailed unpaired t test, p = 0.031), but not in weeks 2, 4, 8, or 18 when imaged in vivo by PET. Immunostaining for Iba1 showed that DMF had no effect on the perilesional volume or the core lesion volume after 2 or 4 weeks of treatment, or at 18 weeks. However, the optical density (OD) measurements of CD4(+) staining showed reduced OD in the lesions of the treated rats. Conclusions DMF reduced the microglial activation in the fDTH-EAE model after 1 week of treatment, as detected by PET imaging of the TSPO ligand [F-18]GE-180. However, over an extended time course, reduced microglial activation was not observed using [F-18]GE-180 or by immunohistochemistry for Iba1(+) microglia/macrophages. Additionally, DMF did affect the infiltration of CD4(+) and CD8(+) T-lymphocytes at the fDTH-EAE lesion.</p
Detection of microglial activation in an acute model of neuroinflammation using PET and radiotracers 11C-(R)-PK11195 and 18F-GE-180.
UNLABELLED: It remains unclear how different translocator protein (TSPO) ligands reflect the spatial extent of astrocyte or microglial activation in various neuroinflammatory conditions. Here, we use a reproducible lipopolysaccharide (LPS)-induced model of acute central nervous system inflammation to compare the binding performance of a new TSPO ligand (18)F-GE-180 with (11)C-(R)-PK11195. Using immunohistochemistry, we also explore the ability of the TSPO ligands to detect activated microglial cells and astrocytes. METHODS: Lewis rats (n = 30) were microinjected with LPS (1 or 10 μg) or saline (1 μL) into the left striatum. The animals were imaged in vivo at 16 h after the injection using PET radiotracers (18)F-GE-180 or (11)C-(R)-PK11195 (n = 3 in each group) and were killed afterward for autoradiography of the brain. Immunohistochemical assessment of OX-42 and glial fibrillary acidic protein (GFAP) was performed to identify activated microglial cells and reactive astrocytes. RESULTS: In vivo PET imaging revealed an increase in the ipsilateral TSPO binding, compared with binding in the contralateral hemisphere, after the microinjection of 10 μg of LPS. No increase was observed with vehicle. By autoradiography, the TSPO radiotracer binding potential in the injected hemisphere was increased after striatal injection of 1 or 10 μg of LPS. However, the significant increase was observed only when using (18)F-GE-180. The area of CD11b-expressing microglial cells extended beyond that of enhanced GFAP staining and mapped more closely to the extent of (18)F-GE-180 binding than to (11)C-(R)-PK11195 binding. The signal from either PET ligand was significantly increased in regions of increased GFAP immunoreactivity and OX-42 colocalization, meaning that the presence of both activated microglia and astrocytes in a given area leads to increased binding of the TSPO radiotracers. CONCLUSION: (18)F-GE-180 is able to reveal sites of activated microglia in both gray and white matter. However, the signal is increased by the presence of activated astrocytes. Therefore, (18)F-GE-180 is a promising new fluorinated longer-half-life tracer that reveals the presence of activated microglia in a manner that is superior to (11)C-(R)-PK11195 due to the higher binding potential observed for this ligand
