63 research outputs found
Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways
To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodeling. Recently microglial cells have been shown to be responsible for a portion of synaptic remodeling, but the remaining mechanisms remain mysterious. Here we report a new role for astrocytes in actively engulfing CNS synapses. This process helps to mediate synapse elimination, requires the Megf10 and Mertk phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to normally refine their retinogeniculate connections and retain excess functional synapses. Lastly, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify Megf10 and Mertk as critical players in the synapse remodeling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes
Direct Identification of the Meloidogyne incognita Secretome Reveals Proteins with Host Cell Reprogramming Potential
The root knot nematode, Meloidogyne incognita, is an obligate parasite that causes significant damage to a broad range of host plants. Infection is associated with secretion of proteins surrounded by proliferating cells. Many parasites are known to secrete effectors that interfere with plant innate immunity, enabling infection to occur; they can also release pathogen-associated molecular patterns (PAMPs, e.g., flagellin) that trigger basal immunity through the nematode stylet into the plant cell. This leads to suppression of innate immunity and reprogramming of plant cells to form a feeding structure containing multinucleate giant cells. Effectors have generally been discovered using genetics or bioinformatics, but M. incognita is non-sexual and its genome sequence has not yet been reported. To partially overcome these limitations, we have used mass spectrometry to directly identify 486 proteins secreted by M. incognita. These proteins contain at least segmental sequence identity to those found in our 3 reference databases (published nematode proteins; unpublished M. incognita ESTs; published plant proteins). Several secreted proteins are homologous to plant proteins, which they may mimic, and they contain domains that suggest known effector functions (e.g., regulating the plant cell cycle or growth). Others have regulatory domains that could reprogram cells. Using in situ hybridization we observed that most secreted proteins were produced by the subventral glands, but we found that phasmids also secreted proteins. We annotated the functions of the secreted proteins and classified them according to roles they may play in the development of root knot disease. Our results show that parasite secretomes can be partially characterized without cognate genomic DNA sequence. We observed that the M. incognita secretome overlaps the reported secretome of mammalian parasitic nematodes (e.g., Brugia malayi), suggesting a common parasitic behavior and a possible conservation of function between metazoan parasites of plants and animals
Lack of Evidence for Neonatal Misoprostol Neurodevelopmental Toxicity in C57BL6/J Mice
Misoprostol is a synthetic analogue of prostaglandin E1 that is administered to women at high doses to induce uterine contractions for early pregnancy termination and at low doses to aid in cervical priming during labor. Because of the known teratogenic effects of misoprostol when given during gestation and its effects on axonal growth in vitro, we examined misoprostol for its potential as a neurodevelopmental toxicant when administered to neonatal C57BL6/J mice. Mice were injected subcutaneously (s.c.) with 0.4, 4 or 40 µg/kg misoprostol on postnatal day 7, the approximate developmental stage in mice of human birth, after which neonatal somatic growth, and sensory and motor system development were assessed. These doses were selected to span the range of human exposure used to induce labor. In addition, adult mice underwent a battery of behavioral tests relevant to neurodevelopmental disorders such as autism including tests for anxiety, stereotyped behaviors, social communication and interactions, and learning and memory. No significant effects of exposure were found for any measure of development or behavioral endpoints. In conclusion, the results of the present study in C57BL/6J mice do not provide support for neurodevelopmental toxicity after misoprostol administration approximating human doses and timed to coincide with the developmental stage of human birth
Meloidogyne incognita - rice (Oryza sativa) interaction: a new model system to study plant-root-knot nematode interactions in monocotyledons
Knockdown of five trehalase genes using RNA interference regulates the gene expression of the chitin biosynthesis pathway in Tribolium castaneum
Voyage en Armenie et en Perse fait dans les ann\ue9es 1805 - 1806
Enth. au
ferd.: Tagebuch einer Landreise durch die K\ufcstenprovinzen Chinas von Manchao, an der S\ufcdk\ufcste von Hainan nach Canton / aus dem Engl. \ufcbers. von C. Fl. Leidenfrostvon P. Am\ue9d\ue9e JaubertIn Fraktu
Effect of Impurities in Industrial Flue Gas on Minimum Miscibility Pressure in CO2 Flooding
Structural magnetic glassiness in the spin ice Dy2 Ti2 O7
The origin and nature of glassy dynamics presents one of the central enigmas of condensed-matter physics across a broad range of systems ranging from window glass to spin glasses. The spin-ice compound Dy2Ti2O7, which is perhaps best known as hosting a three-dimensional Coulomb spin liquid with magnetically charged monopole excitations, also falls out of equilibrium at low temperature. How and why it does so remains an open question. Based on an analysis of low-temperature diffuse neutron-scattering experiments employing different cooling protocols alongside recent magnetic noise studies, combined with extensive numerical modeling, we argue that upon cooling, the spins freeze into what may be termed a "structural magnetic glass,"without an a priori need for chemical or structural disorder. Specifically, our model indicates the presence of frustration on two levels, first producing a near-degenerate constrained manifold inside which phase ordering kinetics is in turn frustrated. A remarkable feature is that monopoles act as sole annealers of the spin network and their pathways and history encode the development of glass dynamics, allowing the glass formation to be visualized. Our results suggest that spin ice Dy2Ti2O7 provides one prototype of magnetic glass formation specifically and a setting for the study of kinetically constrained systems more generally
- …
