300 research outputs found
Characterization of a new pathway that activates lumisterol <i>in vivo</i> to biologically active hydroxylumisterols
Abstract Using LC/qTOF-MS we detected lumisterol, 20-hydroxylumisterol, 22-hydroxylumisterol, 24-hydroxylumisterol, 20,22-dihydroxylumisterol, pregnalumisterol, 17-hydroxypregnalumisterol and 17,20-dihydroxypregnalumisterol in human serum and epidermis, and the porcine adrenal gland. The hydroxylumisterols inhibited proliferation of human skin cells in a cell type-dependent fashion with predominant effects on epidermal keratinocytes. They also inhibited melanoma proliferation in both monolayer and soft agar. 20-Hydroxylumisterol stimulated the expression of several genes, including those associated with keratinocyte differentiation and antioxidative responses, while inhibiting the expression of others including RORA and RORC. Molecular modeling and studies on VDRE-transcriptional activity excludes action through the genomic site of the VDR. However, their favorable interactions with the A-pocket in conjunction with VDR translocation studies suggest they may act on this non-genomic VDR site. Inhibition of RORα and RORγ transactivation activities in a Tet-on CHO cell reporter system, RORα co-activator assays and inhibition of (RORE)-LUC reporter activity in skin cells, in conjunction with molecular modeling, identified RORα and RORγ as excellent receptor candidates for the hydroxylumisterols. Thus, we have discovered a new biologically relevant, lumisterogenic pathway, the metabolites of which display biological activity. This opens a new area of endocrine research on the effects of the hydroxylumisterols on different pathways in different cells and the mechanisms involved
Biomethanation potential of biological and other wastes
Anaerobic technology has been traditionally applied for the treatment of carbon rich wastewater and organic residues. Anaerobic processes can be fully integrated in the biobased economy concept for resource recovery. After a brief introduction about applications of anaerobic processes to industrial wastewater treatment, agriculture feedstock and organic fraction of municipal solid waste, the position of anaerobic processes in biorefinery concepts is presented. Integration of anaerobic digestion with these processes can help in the maximisation of the economic value of the biomass used, while reducing the waste streams produced and mitigating greenhouse gases emissions. Besides the integration of biogas in the existing full-scale bioethanol and biodiesel production processes, the potential applications of biogas in the second generation lignocellulosic, algae and syngas-based biorefinery platforms are discussed.(undefined
The education effect: higher educational qualifications are robustly associated with beneficial personal and socio-political outcomes
Level of education is a predictor of a range of important outcomes, such as political interest and cynicism, social trust, health, well-being, and intergroup attitudes. We address a gap in the literature by analyzing the strength and stability of the education effect associated with this diverse range of outcomes across three surveys covering the period 1986–2011, including novel latent growth analyses of the stability of the education effect within the same individuals over time. Our analyses of the British Social Attitudes Survey, British Household Panel Survey, and International Social Survey Programme indicated that the education effect was robust across these outcomes and relatively stable over time, with higher education levels being associated with higher trust and political interest, better health and well-being, and with less political cynicism and less negative intergroup attitudes. The education effect was strongest when associated with political outcomes and attitudes towards immigrants, whereas it was weakest when associated with health and well-being. Most of the education effect appears to be due to the beneficial consequences of having a university education. Our results demonstrate that this beneficial education effect is also manifested in within-individual changes, with the education effect tending to become stronger as individuals age
Methanotrophic potential of Dutch canal wall biofilms is driven by Methylomonadaceae
Global urbanization of waterways over the past millennium has influenced microbial communities in these aquatic ecosystems. Increased nutrient inputs have turned most urban waters into net sources of the greenhouse gases carbon dioxide (CO2) and methane (CH4). Here, canal walls of five Dutch cities were studied for their biofilm CH4 oxidation potential, alongside field observations of water chemistry, and CO2 and CH4 emissions. Three cities showed canal wall biofilms with relatively high biological CH4 oxidation potential up to 0.48 mmol gDW-1 d-1, whereas the other two cities showed no oxidation potential. Salinity was identified as the main driver of biofilm bacterial community composition. Crenothrix and Methyloglobulus methanotrophs were observed in CH4-oxidizing biofilms. We show that microbial oxidation in canal biofilms is widespread and is likely driven by the same taxa found across cities with distinctly different canal water chemistry. The oxidation potential of the biofilms was not correlated with the amount of CH4 emitted but was related to the presence or absence of methanotrophs in the biofilms. This was controlled by whether there was enough CH4 present to sustain a methanotrophic community. These results demonstrate that canal wall biofilms can directly contribute to the mitigation of greenhouse gases from urban canals
Modulation of Clock Gene Expression by the Transcriptional Coregulator Receptor Interacting Protein 140 (RIP140)
Circadian rhythms are generated in central and peripheral tissues by an
intracellular oscillating timing mechanism known as the circadian clock. Several
lines of evidence show a strong and bidirectional interplay between metabolism
and circadian rhythms. Receptor interacting protein 140 (RIP140) is a
coregulator for nuclear receptors and other transcription factors that represses
catabolic pathways in metabolic tissues. Although RIP140 functions as a
corepressor for most nuclear receptors, mounting evidence points to RIP140 as a
dual coregulator that can repress or activate different sets of genes. Here, we
demonstrate that RIP140 mRNA and protein levels are under circadian regulation
and identify RIP140 as a modulator of clock gene expression, suggesting that
RIP140 can participate in a feedback mechanism affecting the circadian clock. We
show that the absence of RIP140 disturbs the basal levels of
BMAL1 and other clock genes, reducing the amplitude of
their oscillations. In addition, we demonstrate that RIP140 is recruited to
retinoid-related orphan receptor (ROR) binding sites on the
BMAL1 promoter, directly interacts with RORα, and
increases transcription from the BMAL1 promoter in a
RORα-dependent manner. These results indicate that RIP140 is not only
involved in metabolic control but also acts as a coactivator for RORα,
influencing clock gene expression
Direct Regulation of CLOCK Expression by REV-ERB
Circadian rhythms are regulated at the cellular level by transcriptional feedback loops leading to oscillations in expression of key proteins including CLOCK, BMAL1, PERIOD (PER), and CRYPTOCHROME (CRY). The CLOCK and BMAL1 proteins are members of the bHLH class of transcription factors and form a heterodimer that regulates the expression of the PER and CRY genes. The nuclear receptor REV-ERBα plays a key role in regulation of oscillations in BMAL1 expression by directly binding to the BMAL1 promoter and suppressing its expression at certain times of day when REV-ERBα expression levels are elevated. We recently demonstrated that REV-ERBα also regulates the expression of NPAS2, a heterodimer partner of BMAL1. Here, we show that REV-ERBα also regulates the expression another heterodimer partner of BMAL1, CLOCK. We identified a REV-ERBα binding site within the 1st intron of the CLOCK gene using a chromatin immunoprecipitation – microarray screen. Suppression of REV-ERBα expression resulted in elevated CLOCK mRNA expression consistent with REV-ERBα's role as a transcriptional repressor. A REV-ERB response element (RevRE) was identified within this region of the CLOCK gene and was conserved between humans and mice. Additionally, the CLOCK RevRE conferred REV-ERB responsiveness to a heterologous reporter gene. Our data suggests that REV-ERBα plays a dual role in regulation of the activity of the BMAL1/CLOCK heterodimer by regulation of expression of both the BMAL1 and CLOCK genes
Temperature, Viral Genetics, and the Transmission of West Nile Virus by Culex pipiens Mosquitoes
The distribution and intensity of transmission of vector-borne pathogens can be strongly influenced by the competence of vectors. Vector competence, in turn, can be influenced by temperature and viral genetics. West Nile virus (WNV) was introduced into the United States of America in 1999 and subsequently spread throughout much of the Americas. Previously, we have shown that a novel genotype of WNV, WN02, first detected in 2001, spread across the US and was more efficient than the introduced genotype, NY99, at infecting, disseminating, and being transmitted by Culex mosquitoes. In the current study, we determined the relationship between temperature and time since feeding on the probability of transmitting each genotype of WNV. We found that the advantage of the WN02 genotype increases with the product of time and temperature. Thus, warmer temperatures would have facilitated the invasion of the WN02 genotype. In addition, we found that transmission of WNV accelerated sharply with increasing temperature, T, (best fit by a function of T4) showing that traditional degree-day models underestimate the impact of temperature on WNV transmission. This laboratory study suggests that both viral evolution and temperature help shape the distribution and intensity of transmission of WNV, and provides a model for predicting the impact of temperature and global warming on WNV transmission
Gene expression of PMP22 is an independent prognostic factor for disease-free and overall survival in breast cancer patients
<p>Abstract</p> <p>Background</p> <p>Gene expression of peripheral myelin protein 22 (<it>PMP22</it>) and the epithelial membrane proteins (<it>EMPs</it>) was found to be differentially expressed in invasive and non-invasive breast cell lines in a previous study. We want to evaluate the prognostic impact of the expression of these genes on breast cancer.</p> <p>Methods</p> <p>In a retrospective multicenter study, gene expression of <it>PMP22 </it>and the <it>EMPs </it>was measured in 249 primary breast tumors by real-time PCR. Results were statistically analyzed together with clinical data.</p> <p>Results</p> <p>In univariable Cox regression analyses PMP22 and the EMPs were not associated with disease-free survival or tumor-related mortality. However, multivariable Cox regression revealed that patients with higher than median <it>PMP22 </it>gene expression have a 3.47 times higher risk to die of cancer compared to patients with equal values on clinical covariables but lower <it>PMP22 </it>expression. They also have a 1.77 times higher risk to relapse than those with lower <it>PMP22 </it>expression. The proportion of explained variation in overall survival due to <it>PMP22 </it>gene expression was 6.5% and thus PMP22 contributes equally to prognosis of overall survival as nodal status and estrogen receptor status. Cross validation demonstrates that 5-years survival rates can be refined by incorporating <it>PMP22 </it>into the prediction model.</p> <p>Conclusions</p> <p><it>PMP22 </it>gene expression is a novel independent prognostic factor for disease-free survival and overall survival for breast cancer patients. Including it into a model with established prognostic factors will increase the accuracy of prognosis.</p
Sec61alpha synthesis is enhanced during translocation of nascent chains of collagen type IV in F9 teratocarcinoma cells after retinoic acid treatment
- …
