15,159 research outputs found
Resonance Raman spectra of wurtzite and zincblende CdSe nanocrystals
Resonance Raman spectra and absolute differential Raman cross-sections have been measured for CdSe nanocrystals in both the wurtzite and zincblende crystal forms at four excitation wavelengths from 457.9 to 514.5 nm. The frequency and bandshape of the longitudinal optical (LO) phonon fundamental is essentially identical for both crystal forms at each excitation wavelength. The LO phonon overtone to fundamental intensity ratio appears to be slightly higher for the wurtzite form, which may suggest slightly stronger exciton-phonon coupling from the Fröhlich mechanism in the wurtzite form. The LO fundamental Raman cross-sections are very similar for both crystal forms at each excitation wavelength. © 2012 Elsevier B.V. All rights reserved
Adaptive Lévy processes and area-restricted search in human foraging
A considerable amount of research has claimed that animals’ foraging behaviors display movement lengths with power-law distributed tails, characteristic of Lévy flights and Lévy walks. Though these claims have recently come into question, the proposal that many animals forage using Lévy processes nonetheless remains. A Lévy process does not consider when or where resources are encountered, and samples movement lengths independently of past experience. However, Lévy processes too have come into question based on the observation that in patchy resource environments resource-sensitive foraging strategies, like area-restricted search, perform better than Lévy flights yet can still generate heavy-tailed distributions of movement lengths. To investigate these questions further, we tracked humans as they searched for hidden resources in an open-field virtual environment, with either patchy or dispersed resource distributions. Supporting previous research, for both conditions logarithmic binning methods were consistent with Lévy flights and rank-frequency methods–comparing alternative distributions using maximum likelihood methods–showed the strongest support for bounded power-law distributions (truncated Lévy flights). However, goodness-of-fit tests found that even bounded power-law distributions only accurately characterized movement behavior for 4 (out of 32) participants. Moreover, paths in the patchy environment (but not the dispersed environment) showed a transition to intensive search following resource encounters, characteristic of area-restricted search. Transferring paths between environments revealed that paths generated in the patchy environment were adapted to that environment. Our results suggest that though power-law distributions do not accurately reflect human search, Lévy processes may still describe movement in dispersed environments, but not in patchy environments–where search was area-restricted. Furthermore, our results indicate that search strategies cannot be inferred without knowing how organisms respond to resources–as both patched and dispersed conditions led to similar Lévy-like movement distributions
From quantum fusiliers to high-performance networks
Our objective was to design a quantum repeater capable of achieving one
million entangled pairs per second over a distance of 1000km. We failed, but
not by much. In this letter we will describe the series of developments that
permitted us to approach our goal. We will describe a mechanism that permits
the creation of entanglement between two qubits, connected by fibre, with
probability arbitrarily close to one and in constant time. This mechanism may
be extended to ensure that the entanglement has high fidelity without
compromising these properties. Finally, we describe how this may be used to
construct a quantum repeater that is capable of creating a linear quantum
network connecting two distant qubits with high fidelity. The creation rate is
shown to be a function of the maximum distance between two adjacent quantum
repeaters.Comment: 2 figures, Comments welcom
A novel multivariate STeady-state index during general ANesthesia (STAN)
The assessment of the adequacy of general anesthesia for surgery, namely the nociception/anti-nociception balance, has received wide attention from the scientific community. Monitoring systems based on the frontal EEG/EMG, or autonomic state reactions (e.g. heart rate and blood pressure) have been developed aiming to objectively assess this balance. In this study a new multivariate indicator of patients' steady-state during anesthesia (STAN) is proposed, based on wavelet analysis of signals linked to noxious activation. A clinical protocol was designed to analyze precise noxious stimuli (laryngoscopy/intubation, tetanic, and incision), under three different analgesic doses; patients were randomized to receive either remifentanil 2.0, 3.0 or 4.0 ng/ml. ECG, PPG, BP, BIS, EMG and [Formula: see text] were continuously recorded. ECG, PPG and BP were processed to extract beat-to-beat information, and [Formula: see text] curve used to estimate the respiration rate. A combined steady-state index based on wavelet analysis of these variables, was applied and compared between the three study groups and stimuli (Wilcoxon signed ranks, Kruskal-Wallis and Mann-Whitney tests). Following institutional approval and signing the informed consent thirty four patients were enrolled in this study (3 excluded due to signal loss during data collection). The BIS index of the EEG, frontal EMG, heart rate, BP, and PPG wave amplitude changed in response to different noxious stimuli. Laryngoscopy/intubation was the stimulus with the more pronounced response [Formula: see text]. These variables were used in the construction of the combined index STAN; STAN responded adequately to noxious stimuli, with a more pronounced response to laryngoscopy/intubation (18.5-43.1 %, [Formula: see text]), and the attenuation provided by the analgesic, detecting steady-state periods in the different physiological signals analyzed (approximately 50 % of the total study time). A new multivariate approach for the assessment of the patient steady-state during general anesthesia was developed. The proposed wavelet based multivariate index responds adequately to different noxious stimuli, and attenuation provided by the analgesic in a dose-dependent manner for each stimulus analyzed in this study.The first author was supported by a scholarship from the Portuguese Foundation for Science and Technology (FCT SFRH/BD/35879/2007). The authors would also like to acknowledge the support of UISPA—System Integration and Process Automation Unit—Part of the LAETA (Associated Laboratory of Energy,
Transports and Aeronautics) a I&D Unit of the Foundation for Science and Technology (FCT), Portugal. FCT support under project PEst-OE/EME/LA0022/2013.info:eu-repo/semantics/publishedVersio
A first step to accelerating fingerprint matching based on deformable minutiae clustering
Fingerprint recognition is one of the most used biometric
methods for authentication. The identification of a query fingerprint requires
matching its minutiae against every minutiae of all the fingerprints
of the database. The state-of-the-art matching algorithms are costly, from
a computational point of view, and inefficient on large datasets. In this
work, we include faster methods to accelerating DMC (the most accurate
fingerprint matching algorithm based only on minutiae). In particular,
we translate into C++ the functions of the algorithm which represent the
most costly tasks of the code; we create a library with the new code and
we link the library to the original C# code using a CLR Class Library
project by means of a C++/CLI Wrapper. Our solution re-implements
critical functions, e.g., the bit population count including a fast C++
PopCount library and the use of the squared Euclidean distance for calculating
the minutiae neighborhood. The experimental results show a
significant reduction of the execution time in the optimized functions of
the matching algorithm. Finally, a novel approach to improve the matching
algorithm, considering cache memory blocking and parallel data processing,
is presented as future work.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Electronic measurement and control of spin transport in Silicon
The electron spin lifetime and diffusion length are transport parameters that
define the scale of coherence in spintronic devices and circuits. Since these
parameters are many orders of magnitude larger in semiconductors than in
metals, semiconductors could be the most suitable for spintronics. Thus far,
spin transport has only been measured in direct-bandgap semiconductors or in
combination with magnetic semiconductors, excluding a wide range of
non-magnetic semiconductors with indirect bandgaps. Most notable in this group
is silicon (Si), which (in addition to its market entrenchment in electronics)
has long been predicted a superior semiconductor for spintronics with enhanced
lifetime and diffusion length due to low spin-orbit scattering and lattice
inversion symmetry. Despite its exciting promise, a demonstration of coherent
spin transport in Si has remained elusive, because most experiments focused on
magnetoresistive devices; these methods fail because of universal impedance
mismatch obstacles, and are obscured by Lorentz magnetoresistance and Hall
effects. Here we demonstrate conduction band spin transport across 10 microns
undoped Si, by using spin-dependent ballistic hot-electron filtering through
ferromagnetic thin films for both spin-injection and detection. Not based on
magnetoresistance, the hot electron spin-injection and detection avoids
impedance mismatch issues and prevents interference from parasitic effects. The
clean collector current thus shows independent magnetic and electrical control
of spin precession and confirms spin coherent drift in the conduction band of
silicon.Comment: Single PDF file with 4 Figure
Temperature dependent optical properties of CH<inf>3</inf>NH<inf>3</inf>PbI<inf>3</inf> perovskite by spectroscopic ellipsometry
© 2016 AIP Publishing LLC. Mixed organic-inorganic halide perovskites have emerged as a promising new class of semiconductors for photovoltaics with excellent light harvesting properties. Thorough understanding of the optical properties of these materials is important for photovoltaic device optimization and the insight this provides for the knowledge of energy band structures. Here we present an investigation of the sub-room temperature dependent optical properties of polycrystalline thin films of CH3NH3PbI3 perovskites that are of increasing interest for photovoltaics. The complex dielectric function of CH3NH3PbI3 in the energy range of 0.5-4.1 eV is determined between 77 K and 297 K using spectroscopic ellipsometry. An increase in optical permittivity as the temperature decreases is illustrated for CH3NH3PbI3. Optical transitions and critical points were analyzed using the energy dependent second derivative of these dielectric functions as a function of temperature
Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre
A hollow-core photonic crystal fibre (HC-PCF), guided by photonic bandgap effects or anti-resonant reflection, offers strong light confinement and long photochemical interaction lengths in a microscale channel filled with a solvent of refractive index lower than that of glass (usually fused silica). These unique advantages have motivated its recent use as a highly efficient and versatile microreactor for liquid-phase photochemistry and catalysis. In this work, we use a single-ring HC-PCF made from a high-index soft glass, thus enabling photochemical experiments in higher index solvents. The optimized light–matter interaction in the fibre is used to strongly enhance the reaction rate in a proof-of-principle photolysis reaction in toluene
Non-Parametric Approximations for Anisotropy Estimation in Two-dimensional Differentiable Gaussian Random Fields
Spatially referenced data often have autocovariance functions with elliptical
isolevel contours, a property known as geometric anisotropy. The anisotropy
parameters include the tilt of the ellipse (orientation angle) with respect to
a reference axis and the aspect ratio of the principal correlation lengths.
Since these parameters are unknown a priori, sample estimates are needed to
define suitable spatial models for the interpolation of incomplete data. The
distribution of the anisotropy statistics is determined by a non-Gaussian
sampling joint probability density. By means of analytical calculations, we
derive an explicit expression for the joint probability density function of the
anisotropy statistics for Gaussian, stationary and differentiable random
fields. Based on this expression, we obtain an approximate joint density which
we use to formulate a statistical test for isotropy. The approximate joint
density is independent of the autocovariance function and provides conservative
probability and confidence regions for the anisotropy parameters. We validate
the theoretical analysis by means of simulations using synthetic data, and we
illustrate the detection of anisotropy changes with a case study involving
background radiation exposure data. The approximate joint density provides (i)
a stand-alone approximate estimate of the anisotropy statistics distribution
(ii) informed initial values for maximum likelihood estimation, and (iii) a
useful prior for Bayesian anisotropy inference.Comment: 39 pages; 8 figure
Input-to-state stability of infinite-dimensional control systems
We develop tools for investigation of input-to-state stability (ISS) of
infinite-dimensional control systems. We show that for certain classes of
admissible inputs the existence of an ISS-Lyapunov function implies the
input-to-state stability of a system. Then for the case of systems described by
abstract equations in Banach spaces we develop two methods of construction of
local and global ISS-Lyapunov functions. We prove a linearization principle
that allows a construction of a local ISS-Lyapunov function for a system which
linear approximation is ISS. In order to study interconnections of nonlinear
infinite-dimensional systems, we generalize the small-gain theorem to the case
of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov
function for an entire interconnection, if ISS-Lyapunov functions for
subsystems are known and the small-gain condition is satisfied. We illustrate
the theory on examples of linear and semilinear reaction-diffusion equations.Comment: 33 page
- …
