336 research outputs found
Limited congruence exhibited across microbial, meiofaunal and macrofaunal benthic assemblages in a heterogeneous coastal environment
One of the most common approaches for investigating the ecology of spatially complex environments is to examine a single biotic assemblage present, such as macroinvertebrates. Underlying this approach are assumptions that sampled and unsampled taxa respond similarly to environmental gradients and exhibit congruence across different sites. These assumptions were tested for five benthic groups of various sizes (archaea, bacteria, microbial eukaryotes/protists, meiofauna and macrofauna) in Plymouth Sound, a harbour with many different pollution sources. Sediments varied in granulometry, hydrocarbon and trace metal concentrations. Following variable reduction, canonical correspondence analysis did not identify any associations between sediment characteristics and assemblage composition of archaea or macrofauna. In contrast, variation in bacteria was associated with granulometry, trace metal variations and bioturbation (e.g. community bioturbation potential). Protists varied with granulometry, hydrocarbon and trace metal predictors. Meiofaunal variation was associated with hydrocarbon and bioturbation predictors. Taxon turnover between sites varied with only three out of 10 group pairs showing congruence (meiofauna-protists, meiofauna-macrofauna and protists-macrofauna). While our results support using eukaryotic taxa as proxies for others, the lack of congruence suggests caution should be applied to inferring wider indicator or functional interpretations from studies of a single biotic assemblage
Spatial variation of trace metals within intertidal beds of native mussels (Mytilus edulis) and non-native Pacific oysters (Crassostrea gigas): implications for the food web?
Abstract Pollution is of increasing concern within coastal regions and the prevalence of invasive species is also rising. Yet the impact of invasive species on the distribution and potential trophic transfer of metals has rarely been examined. Within European intertidal areas, the non-native Pacific oyster (Crassostrea gigas) is becoming established, forming reefs and displacing beds of the native blue mussel (Mytilus edulis). The main hypothesis tested is that the spatial pattern of metal accumulation within intertidal habitats will change should the abundance and distribution of C. gigas continue to increase. A comparative analysis of trace metal content (cadmium, lead, copper and zinc) in both species was carried out at four shores in south-east England. Metal concentrations in bivalve and sediment samples were determined after acid digestion by inductively coupled plasma-optical emission spectrometry. Although results showed variation in the quantities of zinc, copper and lead (mg m-2) in the two bivalve species, differences in shell thickness are also likely to influence the feeding behaviour of predators and intake of metals. The availability and potential for trophic transfer of metals within the coastal food web, should Pacific oysters transform intertidal habitats, is discussed
Early and reversible changes to the hippocampal proteome in mice on a high-fat diet
Funding LMW, FMC, CG, ACM and C-DM were funded by the Scottish Government’s Rural and Environment Science and Analytical Services Division (RESAS). FHM was supported by an EASTBIO DTP BBSRC studentship. DS was supported by a SULSA studentship.Peer reviewedPublisher PD
High Throughput Automated Allele Frequency Estimation by Pyrosequencing
Pyrosequencing is a DNA sequencing method based on the principle of sequencing-by-synthesis and pyrophosphate detection through a series of enzymatic reactions. This bioluminometric, real-time DNA sequencing technique offers unique applications that are cost-effective and user-friendly. In this study, we have combined a number of methods to develop an accurate, robust and cost efficient method to determine allele frequencies in large populations for association studies. The assay offers the advantage of minimal systemic sampling errors, uses a general biotin amplification approach, and replaces dTTP for dATP-apha-thio to avoid non-uniform higher peaks in order to increase accuracy. We demonstrate that this newly developed assay is a robust, cost-effective, accurate and reproducible approach for large-scale genotyping of DNA pools. We also discuss potential improvements of the software for more accurate allele frequency analysis
The diagnostic accuracy of dopamine transporter SPECT imaging to detect nigrostriatal cell loss in patients with Parkinson’s disease or clinically uncertain parkinsonism: a systematic review
Identification of Reproduction-Specific Genes Associated with Maturation and Estrogen Exposure in a Marine Bivalve Mytilus edulis
Background: While it is established that vertebrate-like steroids, particularly estrogens (estradiol, estrone) and androgens (testosterone), are present in various tissues of molluscs, it is still unclear what role these play in reproductive endocrinology in such organisms. This is despite the significant commercial shellfishery interest in several bivalve species and their decline. Methodology/Principal Findings: Using suppression subtraction hybridisation of mussel gonad samples at two stages (early and mature) of gametogenesis and (in parallel) following controlled laboratory estrogen exposure, we isolate several differentially regulated genes including testis-specific kinases, vitelline lysin and envelope sequences. Conclusions: The differentially expressed mRNAs isolated provide evidence that mussels may be impacted by exogenous estrogen exposure
Protection by the NDI1 Gene against Neurodegeneration in a Rotenone Rat Model of Parkinson's Disease
It is widely recognized that mitochondrial dysfunction, most notably defects in the NADH-quinone oxidoreductase (complex I), is closely related to the etiology of sporadic Parkinson's disease (PD). In fact, rotenone, a complex I inhibitor, has been used for establishing PD models both in vitro and in vivo. A rat model with chronic rotenone exposure seems to reproduce pathophysiological conditions of PD more closely than acute mouse models as manifested by neuronal cell death in the substantia nigra and Lewy body-like cytosolic aggregations. Using the rotenone rat model, we investigated the protective effects of alternative NADH dehydrogenase (Ndi1) which we previously demonstrated to act as a replacement for complex I both in vitro and in vivo. A single, unilateral injection of recombinant adeno-associated virus carrying the NDI1 gene into the vicinity of the substantia nigra resulted in expression of the Ndi1 protein in the entire substantia nigra of that side. It was clear that the introduction of the Ndi1 protein in the substantia nigra rendered resistance to the deleterious effects caused by rotenone exposure as assessed by the levels of tyrosine hydroxylase and dopamine. The presence of the Ndi1 protein also prevented cell death and oxidative damage to DNA in dopaminergic neurons observed in rotenone-treated rats. Unilateral protection also led to uni-directional rotation of the rotenone-exposed rats in the behavioral test. The present study shows, for the first time, the powerful neuroprotective effect offered by the Ndi1 enzyme in a rotenone rat model of PD
The impact of herpes zoster and post-herpetic neuralgia on quality-of-life
International audienceBACKGROUND: The potentially serious nature of herpes zoster (HZ) and the long-term complication post-herpetic neuralgia (PHN) are often underestimated. One in four people will contract herpes zoster in their lifetime, with this risk rising markedly after the age of 50 years, and affecting one in two in elderly individuals. Pain is the predominant symptom in all phases of HZ disease, being reported by up to 90% of patients. In the acute phase, pain is usually moderate or severe, with patients ranking HZ pain as more intense than post-surgical or labour pains. Up to 20% of patients with HZ develop PHN, which is moderate-to-severe chronic pain persisting for months or years after the acute phase. We review the available data on the effect of HZ and PHN on patients' quality-of-life. DISCUSSION: Findings show that HZ, and particularly PHN, have a major impact on patients' lives across all four health domains--physical, psychological, functional and social. There is a clear correlation between increasing severity of pain and greater interference with daily activities. Non-pain complications such as HZ ophthalmicus can increase the risk of permanent physical impairment. Some elderly individuals may experience a permanent loss of independence after an acute episode of HZ. Current challenges in the management of HZ and PHN are highlighted, including the difficulty in administering antiviral agents before pain becomes established and the limited efficacy of pain treatments in many patients. We discuss the clinical rationale for the HZ vaccine and evidence demonstrating that the vaccine reduces the burden of the disease. The Shingles Prevention Study, conducted among >38,000 people aged >or=60 years old, showed that the HZ vaccine significantly reduces the burden of illness and the incidence of both HZ and PHN. In the entire study population, zoster vaccination reduced the severity of interference of HZ and PHN with activities of daily living by two-thirds, as measured by two questionnaires specific to HZ. SUMMARY: A vaccination scheme may positively impact the incidence and course of HZ disease, thereby improving patients' quality-of-life
Genetic Dissection of Acute Ethanol Responsive Gene Networks in Prefrontal Cortex: Functional and Mechanistic Implications
Background
Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain) across a highly diverse family of 27 isogenic mouse strains (BXD panel) before and after treatment with ethanol. Results
Acute ethanol altered the expression of ~2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol\u27s effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity.
Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b,Gria1, Sncb and Nell2. Conclusions
The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence over the ethanol response of gene networks could have important implications for future studies regarding the mechanisms and treatment of alcohol use disorders
Allometry of the Duration of Flight Feather Molt in Birds
Replacement of flight feathers takes disproportionately more time for large birds than it does for small birds, because feather length increases with body size almost twice as fast as feather growth rate increases
- …
