38 research outputs found

    Mapping species distributions: A comparison of skilled naturalist and lay citizen science recording

    Get PDF
    To assess the ability of traditional biological recording schemes and lay citizen science approaches to gather data on species distributions and changes therein, we examined bumblebee records from the UK’s national repository (National Biodiversity Network) and from BeeWatch. The two recording approaches revealed similar relative abundances of bumblebee species but different geographical distributions. For the widespread common carder (Bombus pascuorum), traditional recording scheme data were patchy, both spatially and temporally, reflecting active record centre rather than species distribution. Lay citizen science records displayed more extensive geographic coverage, reflecting human population density, thus offering better opportunities to account for recording effort. For the rapidly spreading tree bumblebee (Bombus hypnorum), both recording approaches revealed similar distributions due to a dedicated mapping project which overcame the patchy nature of naturalist records. We recommend, where possible, complementing skilled naturalist recording with lay citizen science programmes to obtain a nation-wide capability, and stress the need for timely uploading of data to the national repository

    Spatiotemporal Variation in Avian Migration Phenology: Citizen Science Reveals Effects of Climate Change

    Get PDF
    A growing number of studies have documented shifts in avian migratory phenology in response to climate change, and yet there is a large amount of unexplained variation in the magnitude of those responses across species and geographic regions. We use a database of citizen science bird observations to explore spatiotemporal variation in mean arrival dates across an unprecedented geographic extent for 18 common species in North America over the past decade, relating arrival dates to mean minimum spring temperature. Across all species and geographic locations, species shifted arrival dates 0.8 days earlier for every °C of warming of spring temperature, but it was common for some species in some locations to shift as much as 3–6 days earlier per °C. Species that advanced arrival dates the earliest in response to warming were those that migrate more slowly, short distance migrants, and species with broader climatic niches. These three variables explained 63% of the interspecific variation in phenological response. We also identify a latitudinal gradient in the average strength of phenological response, with species shifting arrival earlier at southern latitudes than northern latitudes for the same degree of warming. This observation is consistent with the idea that species must be more phenologically sensitive in less seasonal environments to maintain the same degree of precision in phenological timing

    Vulnerability of phenological synchrony between plants and pollinators in an alpine ecosystem

    No full text
    The relationship between flowering phenology and abundance of bumble bees (Bombus spp.) was investigated using 2 years of phenological data collected in an alpine region of northern Japan. Abundance of Bombus species was observed along a fixed transect throughout the flowering season. The number of flowering species was closely related to the floral resources for pollinators at the community scale. In the year with typical weather, the first flowering peak corresponded to the emergence time of queen bees from hibernation, while the second flowering peak corresponded to the active period of worker bees. In the year with an unusually warm spring, however, phenological synchrony between plants and bees was disrupted. Estimated emergence of queen bees was 10 days earlier than the first flowering date owing to earlier soil thawing and warming. However, subsequent worker emergence was delayed, indicating slower colony development. The flowering season finished 2 weeks earlier in the warm-spring year in response to earlier snowmelt. A common resident species in the alpine environment, B. hypocrita sapporoensis, flexibly responded to the yearly fluctuation of flowering. In contrast, population dynamics of other Bombus species were out of synchrony with the flowering: their frequencies were highest at the end of the flowering season in the warm-spring year. Therefore, phenological mismatch between flowers and pollinators is evident during warm years, which may become more prevalent in a warmer climate. To understand the mechanism of phenological mismatch in the pollination system of the alpine ecosystem, ground temperature, snowmelt regime, and life cycle of pollinators are key factors
    corecore