8 research outputs found

    Final characterisation and design of the Gamma-ray Cherenkov Telescope (GCT) for the Cherenkov Telescope Array

    Get PDF
    The Gamma-ray Cherenkov Telescope (GCT) is one of the telescopes proposed for the Small Sized Telescope (SST) section of CTA. Based on a dual-mirror Schwarzschild-Couder design, which allows for more compact telescopes and cameras than the usual single-mirror designs, it will be equipped with a Compact High-Energy Camera (CHEC) based on silicon photomultipliers (SiPM). In 2015, the GCT prototype was the first dual-mirror telescope constructed in the prospect of CTA to record Cherenkov light on the night sky. Further tests and observations have been performed since then. This report describes the current status of the GCT, the results of tests performed to demonstrate its compliance with CTA requirements, and the optimisation of the design for mass production. The GCT collaboration, including teams from Australia, France, Germany, Japan, the Netherlands and the United Kingdom, plans to install the first telescopes on site in Chile for 2019-2020 as part of the CTA pre-production phase

    Final characterisation and design of the Gamma-ray Cherenkov Telescope (GCT) for the Cherenkov Telescope Array

    No full text
    The Gamma-ray Cherenkov Telescope (GCT) is one of the telescopes proposed for the Small Sized Telescope (SST) section of CTA. Based on a dual-mirror Schwarzschild-Couder design, which allows for more compact telescopes and cameras than the usual single-mirror designs, it will be equipped with a Compact High-Energy Camera (CHEC) based on silicon photomultipliers (SiPM). In 2015, the GCT prototype was the first dual-mirror telescope constructed in the prospect of CTA to record Cherenkov light on the night sky. Further tests and observations have been performed since then. This report describes the current status of the GCT, the results of tests performed to demonstrate its compliance with CTA requirements, and the optimisation of the design for mass production. The GCT collaboration, including teams from Australia, France, Germany, Japan, the Netherlands and the United Kingdom, plans to install the first telescopes on site in Chile for 2019-2020 as part of the CTA pre-production phase

    Endogenous and food-derived polyamines: determination by electrochemical sensing

    No full text
    olyamines (PAs) are involved in a variety of fundamental physio-pathologic processes. The concentration of these polycations in organs and tissues depends on their endogenous production and oxidation rates, and on their intake from foods. Besides being largely accepted as markers for the progress of several pathologies, PAs may exert themselves different effects on humans, ranging from being positive to be drastically detrimental depending on the organism conditions. Thus, if the determination of polyamines content in tissue samples is of great importance as they could be indicators of several diseases, their quantification in food is fundamental for modulating the diet to respond to a specific human health status. Thus, the determination of PA content in food is increasingly urgent. Standard analytical methods for polyamine quantification are mainly based on chromatography, where high-performance liquid chromatography and gas chromatography are the most often used, involving pre-column or post-column derivatization techniques. Driven by the growing need for rapid in situ analyses, electrochemical biosensors, comprising various combinations of different enzymes or nanomaterials for the selective bio-recognition and detection, are emerging as competitors of standard detection systems. The present review is aimed at providing an up-to-date overview on the recent progresses in the development of sensors and biosensors for the detection of polyamines in human tissues and food samples. Basic principles of different electrochemical (bio)sensor formats are reported and the applications in human tissues and in foods was evidenced

    Endogenous and food-derived polyamines: determination by electrochemical sensing

    No full text
    corecore