22 research outputs found
Forest biodiversity, ecosystem functioning and the provision of ecosystem services
Forests are critical habitats for biodiversity and they are also essential for the provision of a wide range of ecosystem services that are important to human well-being. There is increasing evidence that biodiversity contributes to forest ecosystem functioning and the provision of ecosystem services. Here we provide a review of forest ecosystem services including biomass production, habitat provisioning services, pollination, seed dispersal, resistance to wind storms, fire regulation and mitigation, pest regulation of native and invading insects, carbon sequestration, and cultural ecosystem services, in relation to forest type, structure and diversity. We also consider relationships between forest biodiversity and multifunctionality, and trade-offs among ecosystem services. We compare the concepts of ecosystem processes, functions and services to clarify their definitions. Our review of published studies indicates a lack of empirical studies that establish quantitative and causal relationships between forest biodiversity and many important ecosystem services. The literature is highly skewed; studies on provisioning of nutrition and energy, and on cultural services, delivered by mixed-species forests are under-represented. Planted forests offer ample opportunity for optimising their composition and diversity because replanting after harvesting is a recurring process. Planting mixed-species forests should be given more consideration as they are likely to provide a wider range of ecosystem services within the forest and for adjacent land uses. This review also serves as the introduction to this special issue of Biodiversity and Conservation on various aspects of forest biodiversity and ecosystem services
Extent, intensity and drivers of mammal defaunation:a continental-scale analysis across the Neotropics
Neotropical mammal diversity is currently threatened by several chronic human-induced pressures. We compiled 1,029 contemporary mammal assemblages surveyed across the Neotropics to quantify the continental-scale extent and intensity of defaunation and understand their determinants based on environmental covariates. We calculated a local defaunation index for all assemblages—adjusted by a false-absence ratio—which was examined using structural equation models. We propose a hunting index based on socioenvironmental co-variables that either intensify or inhibit hunting, which we used as an additional predictor of defaunation. Mammal defaunation intensity across the Neotropics on average erased 56.5% of the local source fauna, with ungulates comprising the most ubiquitous losses. The extent of defaunation is widespread, but more incipient in hitherto relatively intact major biomes that are rapidly succumbing to encroaching deforestation frontiers. Assemblage-wide mammal body mass distribution was greatly reduced from a historical 95th-percentile of ~ 14 kg to only ~ 4 kg in modern assemblages. Defaunation and depletion of large-bodied species were primarily driven by hunting pressure and remaining habitat area. Our findings can inform guidelines to design transnational conservation policies to safeguard native vertebrates, and ensure that the “empty ecosystem” syndrome will be deterred from reaching much of the New World tropics
Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis
Intact forests provide diverse and irreplaceable ecosystem services that are critical to human well-being, such as carbon storage to mitigate climate change. However, the ecosystem functions that underpin these services are highly dependent on the woody vegetation-animal interactions occurring within forests. While vertebrate defaunation is of growing policy concern, the effects of vertebrate loss on natural forest regeneration have yet to be quantified globally. Here we conduct a meta-analysis to assess the direction and magnitude of defaunation impacts on forests. We demonstrate that real-world defaunation caused by hunting and habitat fragmentation leads to reduced forest regeneration, although manipulation experiments provide contrasting findings. The extirpation of primates and birds cause the greatest declines in forest regeneration, emphasising their key role in maintaining carbon stores, and the need for national and international climate change and conservation strategies to protect forests from defaunation fronts as well as deforestation fronts
What evidence exists on the impact of governance type on the conservation effectiveness of forest protected areas? Knowledge base and evidence gaps
Altered stand structure and tree allometry reduce carbon storage in evergreen forest fragments in India's Western Ghats
Tropical forests are among the largest terrestrial reservoirs of carbon, and play an important role in regulating global climate. However, as a result of historic and ongoing deforestation, carbon storage in this biome is increasingly dependent on forests that are fragmented and used by humans, with considerable uncertainty about how such disturbance alters carbon storage potential and cycling. Here, we evaluate differences in above-ground carbon stocks between fragmented and contiguous evergreen forests in the central Western Ghats, India. We also assess differences in the structure, tree allometry and functional composition of forest stands between contiguous and fragmented forests, and explore how these differences influence carbon storage in fragmented forests. Relatively large, well-protected forest fragments currently store 40% less carbon per hectare above ground than contiguous forests. These differences in carbon are related to (i) lower tree density and basal area in fragments, (ii) lower average stand height in fragments, and (iii) compositional shifts favoring species with lower wood densities. Reduced stand height in fragments was associated with intra-specific variation in tree allometry, with trees in fragments being relatively shorter at any given diameter than conspecifics in contiguous forests. Further, the relatively skewed distribution of carbon storage within a few large trees in current-day fragments is added cause for concern: carbon stocks in fragments are likely to decline further in the future, following the eventual death of large trees. Active management and restoration to mitigate ecologically driven changes in habitat structure and species composition might be as important as improved management of resource use and protection from exploitation in order to sustain carbon storage ecosystem services provided by these tropical forest fragments
Tree diversity and carbon storage cobenefits in tropical human‐dominated landscapes
A lack of spatial congruence between carbon storage and biodiversity in intact forests suggests limited cobenefits of carbon‐focused policies for conserving tropical biodiversity. However, whether the same applies in tropical human‐dominated landscapes (HDLs) is unclear. In India's Western Ghats Biodiversity Hotspot, we found that while HDL forests harbor lower tree diversity and aboveground carbon stocks than relatively intact forests, positive diversity–carbon correlations are more prevalent in HDLs. This is because anthropogenic drivers of species loss in HDLs consistently reduce carbon storing biomass volume (lower basal area), and biomass per unit volume (fewer hardwood trees). We further show, using a meta‐analysis spanning multiple regions, that these patterns apply to tropical HDLs more generally. Thus, while complementary strategies are needed for securing the irreplaceable biodiversity and carbon values of intact forests, ubiquitous tropical HDLs might hold greater potential for synergizing biodiversity conservation and climate change mitigation
Forest Landscape Restoration as a NbS Strategy for Achieving Bonn Challenge Pledge: Lessons from India’s Restoration Efforts
Synergistic effects of seed disperser and predator loss on recruitment success and long-term consequences for carbon stocks in tropical rainforests
Made available in DSpace on 2018-12-11T17:33:41Z (GMT). No. of bitstreams: 0
Previous issue date: 2017-12-01The extinction of large frugivores has consequences for the recruitment of large-seeded plants with potential lasting effects on carbon storage in tropical rainforests. However, previous studies relating frugivore defaunation to changes in carbon storage ignore potential compensation by redundant frugivores and the effects of seed predators on plant recruitment. Based on empirical data of the recruitment success of a large-seeded hardwood tree species (Cryptocarya mandioccana, Lauraceae) across a defaunation gradient of seed dispersers and predators, we show that defaunation increases both seed dispersal limitation and seed predation. Depending on the level of seed predator loss, plant recruitment is reduced by 70.7-94.9% as a result of the loss of seed dispersers. The loss of large seed predators increases the net seed mortality by 7-30% due to the increased abundance of small granivorous rodents. The loss of large seed dispersers can be buffered by the compensatory effects of smaller frugivores in seed removal, but it is not sufficient to prevent a decrease in plant recruitment. We show that the conservation of both seed predators and dispersers is necessary for the recruitment of large-seeded plants. Since these plants contribute substantially to carbon stocks, defaunation can jeopardize the maintenance of tropical forest carbon storage.Universidade Estadual Paulista (UNESP) Instituto de Biociências Departamento de Zoologia Laboratório de Primatologia, Avenida 24A, CP199 1515Universidade Estadual Paulista (UNESP) Instituto de Biociências Departamento de Ecologia Laboratório de Biologia da Conservação, Avenida 24A, 1515 CP199Escola Superior de Agricultura Luiz de Queiroz (ESALQ) Universidade de São Paulo (USP) Departamento de Ciências Florestais, Avenida Pádua Dias, 11Universidade Estadual Paulista (UNESP) Instituto de Biociências Departamento de Zoologia Laboratório de Primatologia, Avenida 24A, CP199 1515Universidade Estadual Paulista (UNESP) Instituto de Biociências Departamento de Ecologia Laboratório de Biologia da Conservação, Avenida 24A, 1515 CP19
