1,493 research outputs found

    Shape-resonant superconductivity in nanofilms: from weak to strong coupling

    Full text link
    Ultrathin superconductors of different materials are becoming a powerful platform to find mechanisms for enhancement of superconductivity, exploiting shape resonances in different superconducting properties. Here we evaluate the superconducting gap and its spatial profile, the multiple gap components, and the chemical potential, of generic superconducting nanofilms, considering the pairing attraction and its energy scale as tunable parameters, from weak to strong coupling, at fixed electron density. Superconducting properties are evaluated at mean field level as a function of the thickness of the nanofilm, in order to characterize the shape resonances in the superconducting gap. We find that the most pronounced shape resonances are generated for weakly coupled superconductors, while approaching the strong coupling regime the shape resonances are rounded by a mixing of the subbands due to the large energy gaps extending over large energy scales. Finally, we find that the spatial profile, transverse to the nanofilm, of the superconducting gap acquires a flat behavior in the shape resonance region, indicating that a robust and uniform multigap superconducting state can arise at resonance.Comment: 7 pages, 4 figures. Submitted to the Proceedings of the Superstripes 2016 conferenc

    Quantum States and Phases in Driven Open Quantum Systems with Cold Atoms

    Full text link
    An open quantum system, whose time evolution is governed by a master equation, can be driven into a given pure quantum state by an appropriate design of the system-reservoir coupling. This points out a route towards preparing many body states and non-equilibrium quantum phases by quantum reservoir engineering. Here we discuss in detail the example of a \emph{driven dissipative Bose Einstein Condensate} of bosons and of paired fermions, where atoms in an optical lattice are coupled to a bath of Bogoliubov excitations via the atomic current representing \emph{local dissipation}. In the absence of interactions the lattice gas is driven into a pure state with long range order. Weak interactions lead to a weakly mixed state, which in 3D can be understood as a depletion of the condensate, and in 1D and 2D exhibits properties reminiscent of a Luttinger liquid or a Kosterlitz-Thouless critical phase at finite temperature, with the role of the ``finite temperature'' played by the interactions.Comment: 9 pages, 2 figure

    Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms

    Full text link
    Fermionic alkaline-earth atoms have unique properties that make them attractive candidates for the realization of novel atomic clocks and degenerate quantum gases. At the same time, they are attracting considerable theoretical attention in the context of quantum information processing. Here we demonstrate that when such atoms are loaded in optical lattices, they can be used as quantum simulators of unique many-body phenomena. In particular, we show that the decoupling of the nuclear spin from the electronic angular momentum can be used to implement many-body systems with an unprecedented degree of symmetry, characterized by the SU(N) group with N as large as 10. Moreover, the interplay of the nuclear spin with the electronic degree of freedom provided by a stable optically excited state allows for the study of spin-orbital physics. Such systems may provide valuable insights into strongly correlated physics of transition metal oxides, heavy fermion materials, and spin liquid phases.Comment: 15 pages, 10 figures. V2: extended experimental accessibility and Kondo sections in the main text (including new Fig. 5b) and in the Methods; reorganized other parts; added reference

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    HIV-1 Infection in Cyprus, the Eastern Mediterranean European Frontier: A Densely Sampled Transmission Dynamics Analysis from 1986 to 2012

    Get PDF
    Since HIV-1 treatment is increasingly considered an effective preventionstrategy, it is important to study local HIV-1 epidemics to formulate tailored preventionpolicies. The prevalence of HIV-1 in Cyprus was historically low until 2005. To investigatethe shift in epidemiological trends, we studied the transmission dynamics of HIV-1 in Cyprususing a densely sampled Cypriot HIV-1 transmission cohort that included 85 percent ofHIV-1-infected individuals linked to clinical care between 1986 and 2012 based on detailedclinical, epidemiological, behavioral and HIV-1 genetic information. Subtyping andtransmission cluster reconstruction were performed using maximum likelihood and Bayesianmethods, and the transmission chain network was linked to the clinical, epidemiological andbehavioral data. The results reveal that for the main HIV-1 subtype A1 and B sub-epidemics,young and drug-naïve HIV-1-infected individuals in Cyprus are driving the dynamics of thelocal HIV-1 epidemic. The results of this study provide a better understanding of thedynamics of the HIV-1 infection in Cyprus, which may impact the development of preventionstrategies. Furthermore, this methodology for analyzing densely sampled transmissiondynamics is applicable to other geographic regions to implement effective HIV-1 preventionstrategies in local settings

    Dynamics of a Quantum Phase Transition and Relaxation to a Steady State

    Full text link
    We review recent theoretical work on two closely related issues: excitation of an isolated quantum condensed matter system driven adiabatically across a continuous quantum phase transition or a gapless phase, and apparent relaxation of an excited system after a sudden quench of a parameter in its Hamiltonian. Accordingly the review is divided into two parts. The first part revolves around a quantum version of the Kibble-Zurek mechanism including also phenomena that go beyond this simple paradigm. What they have in common is that excitation of a gapless many-body system scales with a power of the driving rate. The second part attempts a systematic presentation of recent results and conjectures on apparent relaxation of a pure state of an isolated quantum many-body system after its excitation by a sudden quench. This research is motivated in part by recent experimental developments in the physics of ultracold atoms with potential applications in the adiabatic quantum state preparation and quantum computation.Comment: 117 pages; review accepted in Advances in Physic

    Cardiovascular safety of type 2 diabetes medications: Review of existing literature and clinical implications

    Get PDF
    Type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD) and the cardiovascular effect of antidiabetic drugs are today critical medical issues, with the prevalence of T2DM in particular showing a steep increase worldwide, mainly due to unhealthy lifestyle habits. T2DM in association with obesity and other cardiovascular risk factors, results in the development of CVD, the leading cause of morbidity and mortality in patients with T2DM. Thus, treatment of T2DM is an individualized and complex challenge in which targeting cardiovascular risk factors is an important component in the decision making. Given the cardiovascular adverse events associated with rosiglitazone, both the Food and Drug Administration and the European Medicines Agency currently require the demonstration of cardiovascular safety of new antidiabetic drugs. Consequently, clinical trials to guarantee their cardiovascular safety are now obligatory. This review aims to summarize the available evidence on the cardiovascular effects and safety of the major drugs used in T2DM treatment and also to provide an overview of upcoming and ongoing clinical trials in this field. Our belief is that this review will be of substantial assistance to all medical doctors who are treating diabetic patients, namely primary care physicians, internal medicine doctors, endocrinologists, diabetologists and less well experienced personnel such as young doctors in training
    corecore