53 research outputs found

    Conscious perception of errors and its relation to the anterior insula

    Get PDF
    To detect erroneous action outcomes is necessary for flexible adjustments and therefore a prerequisite of adaptive, goal-directed behavior. While performance monitoring has been studied intensively over two decades and a vast amount of knowledge on its functional neuroanatomy has been gathered, much less is known about conscious error perception, often referred to as error awareness. Here, we review and discuss the conditions under which error awareness occurs, its neural correlates and underlying functional neuroanatomy. We focus specifically on the anterior insula, which has been shown to be (a) reliably activated during performance monitoring and (b) modulated by error awareness. Anterior insular activity appears to be closely related to autonomic responses associated with consciously perceived errors, although the causality and directions of these relationships still needs to be unraveled. We discuss the role of the anterior insula in generating versus perceiving autonomic responses and as a key player in balancing effortful task-related and resting-state activity. We suggest that errors elicit reactions highly reminiscent of an orienting response and may thus induce the autonomic arousal needed to recruit the required mental and physical resources. We discuss the role of norepinephrine activity in eliciting sufficiently strong central and autonomic nervous responses enabling the necessary adaptation as well as conscious error perception

    Chemical genetics strategies for identification of molecular targets

    Get PDF
    Chemical genetics is an emerging field that can be used to study the interactions of chemical compounds, including natural products, with proteins. Usually, the identification of molecular targets is the starting point for studying a drug’s mechanism of action and this has been a crucial step in understanding many biological processes. While a great variety of target identification methods have been developed over the last several years, there are still many bioactive compounds whose target proteins have not yet been revealed because no routine protocols can be adopted. This review contains information concerning the most relevant principles of chemical genetics with special emphasis on the different genomic and proteomic approaches used in forward chemical genetics to identify the molecular targets of the bioactive compounds, the advantages and disadvantages of each and a detailed list of successful examples of molecular targets identified with these approaches

    A machine learning approach to predict perceptual decisions: an insight into face pareidolia

    Get PDF
    The perception of an external stimulus not only depends upon the characteristics of the stimulus but is also influenced by the ongoing brain activity prior to its presentation. In this work, we directly tested whether spontaneous electrical brain activities in prestimulus period could predict perceptual outcome in face pareidolia (visualizing face in noise images) on a trial-by-trial basis. Participants were presented with only noise images but with the prior information that some faces would be hidden in these images, while their electrical brain activities were recorded; participants reported their perceptual decision, face or no-face, on each trial. Using differential hemispheric asymmetry features based on large-scale neural oscillations in a machine learning classifier, we demonstrated that prestimulus brain activities could achieve a classification accuracy, discriminating face from no-face perception, of 75% across trials. The time–frequency features representing hemispheric asymmetry yielded the best classification performance, and prestimulus alpha oscillations were found to be mostly involved in predicting perceptual decision. These findings suggest a mechanism of how prior expectations in the prestimulus period may affect post-stimulus decision making

    Growth factor release and dental pulp stem cell attachment following dentine conditioning: An <i>in vitro</i> study

    No full text
    AIM: The aim of the study was to investigate the effect of dentine conditioning agents on growth factor liberation and settlement of dental pulp progenitor cells (DPSCs) on dentine surfaces. METHODOLOGY: The agents used included ethylenediaminetetraacetic acid (EDTA; 10%, pH 7.2), phosphoric acid (37%, pH < 1), citric acid (10%, pH 1.5) and polyacrylic acid (25%, pH 3.9). Human dentine slices were conditioned for exaggerated conditioning times of 5 and 10 min, so that the growth factor liberation reached quantifiable levels above the limit of detection of the laboratory methods employed. Transforming growth factor beta-1 (TGF-β1) release and surface exposure were quantified by enzyme-linked immunosorbent assay (ELISA) and immunogold labelling. Scanning electron microscopy (SEM) was used to assess the morphology of cells and coverage by DPSCs cultured on dentine surfaces for 8 days. RESULTS: After 5-min conditioning of dentine slices, citric acid was the most effective agent for growth factor release into the aqueous environment as measured by ELISA (Mann-Whitney U with Bonferroni correction, p < .01 compared with phosphoric and polyacrylic acid). As well as this, dentine slices treated with phosphoric acid for the same period, displayed significantly less TGF-β1 on the surface compared with the other agents used, as measured by immunogold labelling (MWU with Bonferroni correction, p < .05). After 8 days, widespread coverage by DPSCs on dentine surfaces conditioned with citric acid and EDTA were evident under SEM. On dentine surfaces conditioned with phosphoric and polyacrylic acid, respectively, less spread cells and inconsistent cell coverage were observed. CONCLUSIONS: Based on the findings of this in vitro study, a desirable biological growth factor-mediated effect may be gained when conditioning dentine by milder acidic or chelating agents such as citric acid and EDTA. The results must be interpreted in the context that the potential of the applied materials inducing a desirable biological response in DPSCs is only one consideration amongst other important ones in a clinical setting. However, it is crucial to look beyond the mere physical effects of materials and move towards biologically based treatment approaches as far as the restorative management of teeth with viable dental pulps are concerned
    corecore