578 research outputs found
Multiple Imputation Ensembles (MIE) for dealing with missing data
Missing data is a significant issue in many real-world datasets, yet there are no robust methods for dealing with it appropriately. In this paper, we propose a robust approach to dealing with missing data in classification problems: Multiple Imputation Ensembles (MIE). Our method integrates two approaches: multiple imputation and ensemble methods and compares two types of ensembles: bagging and stacking. We also propose a robust experimental set-up using 20 benchmark datasets from the UCI machine learning repository. For each dataset, we introduce increasing amounts of data Missing Completely at Random. Firstly, we use a number of single/multiple imputation methods to recover the missing values and then ensemble a number of different classifiers built on the imputed data. We assess the quality of the imputation by using dissimilarity measures. We also evaluate the MIE performance by comparing classification accuracy on the complete and imputed data. Furthermore, we use the accuracy of simple imputation as a benchmark for comparison. We find that our proposed approach combining multiple imputation with ensemble techniques outperform others, particularly as missing data increases
Functional Locomotor Consequences of Uneven Forefeet for Trot Symmetry in Individual Riding Horses
ABSTRACT: Left-right symmetrical distal limb conformation can be an important prerequisite for a successful performance, and it is often hypothesized that asymmetric or uneven feet are important enhancing factors for the development of lameness. On a population level, it has been demonstrated that uneven footed horses are retiring earlier from elite level competition, but the biomechanical consequences are not yet known. The objectives of this study were to compare the functional locomotor asymmetries of horses with uneven to those with even feet. Hoof kinetics and distal limb kinematics were collected from horses (n = 34) at trot. Dorsal hoof wall angle was used to classify horses as even or uneven (1.5° difference between forefeet respectively) and individual feet as flat (55°). Functional kinetic parameters were compared between even and uneven forefeet using MANOVA followed by ANOVA. The relative influences of differences in hoof angle between the forefeet and of absolute hoof angle on functional parameters were analysed using multiple regression analysis (P<0.05). In horses with uneven feet, the side with the flatter foot showed a significantly larger maximal horizontal braking and vertical ground reaction force, a larger vertical fetlock displacement and a suppler fetlock spring. The foot with a steeper hoof angle was linearly correlated with an earlier braking-propulsion transition. The conformational differences between both forefeet were more important for loading characteristics than the individual foot conformation of each individual horse. The differences in vertical force and braking force between uneven forefeet could imply either an asymmetrical loading pattern without a pathological component or a subclinical lameness as a result of a pathological development in the steeper foot
The Evolution of Functionally Redundant Species; Evidence from Beetles
While species fulfill many different roles in ecosystems, it has been suggested that numerous species might actually share the same function in a near neutral way. So-far, however, it is unclear whether such functional redundancy really exists. We scrutinize this question using extensive data on the world’s 4168 species of diving beetles. We show that across the globe these animals have evolved towards a small number of regularly-spaced body sizes, and that locally co-existing species are either very similar in size or differ by at least 35%. Surprisingly, intermediate size differences (10–20%) are rare. As body-size strongly reflects functional aspects such as the food that these generalist predators can eat, these beetles thus form relatively distinct groups of functional look-a-likes. The striking global regularity of these patterns support the idea that a self-organizing process drives such species-rich groups to self-organize evolutionary into clusters where functional redundancy ensures resilience through an insurance effect
The emergence of synaesthesia in a Neuronal Network Model via changes in perceptual sensitivity and plasticity
Synaesthesia is an unusual perceptual experience in which an inducer stimulus triggers a percept in a different domain in addition to its own. To explore the conditions under which synaesthesia evolves, we studied a neuronal network model that represents two recurrently connected neural systems. The interactions in the network evolve according to learning rules that optimize sensory sensitivity. We demonstrate several scenarios, such as sensory deprivation or heightened plasticity, under which synaesthesia can evolve even though the inputs to the two systems are statistically independent and the initial cross-talk interactions are zero. Sensory deprivation is the known causal mechanism for acquired synaesthesia and increased plasticity is implicated in developmental synaesthesia. The model unifies different causes of synaesthesia within a single theoretical framework and repositions synaesthesia not as some quirk of aberrant connectivity, but rather as a functional brain state that can emerge as a consequence of optimising sensory information processing
Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A
Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10(-9), odds ratio (A) = 1.42, 95% confidence interval: 1.26-1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures
Managing the climate commons at the nexus of ecology, behaviour and economics
Sustainably managing coupled ecological–economic systems requires not only an understanding of the environmental factors that affect them, but also knowledge of the interactions and feedback cycles that operate between resource dynamics and activities attributable to human intervention. The socioeconomic dynamics, in turn, call for an investigation of the behavioural drivers behind human action. We argue that a multidisciplinary approach is needed in order to tackle the increasingly pressing and intertwined environmental challenges faced by modern societies. Academic contributions to climate change policy have been constrained by methodological and terminological differences, so we discuss how programmes aimed at cross-disciplinary education and involvement in governance may help to unlock scholars' potential to propose new solutions
Offspring Hormones Reflect the Maternal Prenatal Social Environment: Potential for Foetal Programming?
Females of many species adaptively program their offspring to predictable environmental conditions, a process that is often mediated by hormones. Laboratory studies have shown, for instance, that social density affects levels of maternal cortisol and testosterone, leading to fitness-relevant changes in offspring physiology and behaviour. However, the effects of social density remain poorly understood in natural populations due to the difficulty of disentangling confounding influences such as climatic variation and food availability. Colonially breeding marine mammals offer a unique opportunity to study maternal effects in response to variable colony densities under similar ecological conditions. We therefore quantified maternal and offspring hormone levels in 84 Antarctic fur seals (Arctocephalus gazella) from two closely neighbouring colonies of contrasting density. Hair samples were used as they integrate hormone levels over several weeks or months and therefore represent in utero conditions during foetal development. We found significantly higher levels of cortisol and testosterone (both P < 0.001) in mothers from the high density colony, reflecting a more stressful and competitive environment. In addition, offspring testosterone showed a significant positive correlation with maternal cortisol (P < 0.05). Although further work is needed to elucidate the potential consequences for offspring fitness, these findings raise the intriguing possibility that adaptive foetal programming might occur in fur seals in response to the maternal social environment. They also lend support to the idea that hormonally mediated maternal effects may depend more strongly on the maternal regulation of androgen rather than cortisol levels
Recommended from our members
Warming of Central European lakes and their response to the 1980s climate regime shift
Lake surface water temperatures (LSWTs) are sensitive to atmospheric warming and have previously been shown to respond to regional changes in the climate. Using a combination of in situ and simulated surface temperatures from 20 Central European lakes, with data spanning between 50 and ∼100 years, we investigate the long-term increase in annually averaged LSWT. We demonstrate that Central European lakes are warming most in spring and experience a seasonal variation in LSWT trends. We calculate significant LSWT warming during the past few decades and illustrate, using a sequential t test analysis of regime shifts, a substantial increase in annually averaged LSWT during the late 1980s, in response to an abrupt shift in the climate. Surface air temperature measurements from 122 meteorological stations situated throughout Central Europe demonstrate similar increases at this time. Climatic modification of LSWT has numerous consequences for water quality and lake ecosystems. Quantifying the response of LSWT increase to large-scale and abrupt climatic shifts is essential to understand how lakes will respond in the future
The OPTIMIST study: optimisation of cost effectiveness through individualised FSH stimulation dosages for IVF treatment. A randomised controlled trial
Contains fulltext :
109739.pdf (publisher's version ) (Open Access)ABSTRACT: BACKGROUND: Costs of in vitro fertilisation (IVF) are high, which is partly due to the use of follicle stimulating hormone (FSH). FSH is usually administered in a standard dose. However, due to differences in ovarian reserve between women, ovarian response also differs with potential negative consequences on pregnancy rates. A Markov decision-analytic model showed that FSH dose individualisation according to ovarian reserve is likely to be cost-effective in women who are eligible for IVF. However, this has never been confirmed in a large randomised controlled trial (RCT). The aim of the present study is to assess whether an individualised FSH dose regime based on an ovarian reserve test (ORT) is more cost-effective than a standard dose regime. METHODS/DESIGN: Multicentre RCT in subfertile women indicated for a first IVF or intracytoplasmic sperm injection cycle, who are aged < 44 years, have a regular menstrual cycle and no major abnormalities at transvaginal sonography. Women with polycystic ovary syndrome, endocrine or metabolic abnormalities and women undergoing IVF with oocyte donation, will not be included. Ovarian reserve will be assessed by measuring the antral follicle count. Women with a predicted poor response or hyperresponse will be randomised for a standard versus an individualised FSH regime (150 IU/day, 225-450 IU/day and 100 IU/day, respectively). Participants will undergo a maximum of three stimulation cycles during maximally 18 months. The primary study outcome is the cumulative ongoing pregnancy rate resulting in live birth achieved within 18 months after randomisation. Secondary outcomes are parameters for ovarian response, multiple pregnancies, number of cycles needed per live birth, total IU of FSH per stimulation cycle, and costs. All data will be analysed according to the intention-to-treat principle. Cost-effectiveness analysis will be performed to assess whether the health and associated economic benefits of individualised treatment of subfertile women outweigh the additional costs of an ORT. DISCUSSION: The results of this study will be integrated into a decision model that compares cost-effectiveness of the three dose-adjustment strategies to a standard dose strategy. The study outcomes will provide scientific foundation for national and international guidelines. TRIAL REGISTRATION: NTR2657
Nox2 underpins microvascular inflammation and vascular contributions to cognitive decline
\ua9 The Author(s) 2022. Chronic microvascular inflammation and oxidative stress are inter-related mechanisms underpinning white matter disease and vascular cognitive impairment (VCI). A proposed mediator is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (Nox2), a major source of reactive oxygen species (ROS) in the brain. To assess the role of Nox2 in VCI, we studied a tractable model with white matter pathology and cognitive impairment induced by bilateral carotid artery stenosis (BCAS). Mice with genetic deletion of Nox2 (Nox2 KO) were compared to wild-type (WT) following BCAS. Sustained BCAS over 12 weeks in WT mice induced Nox2 expression, indices of microvascular inflammation and oxidative damage, along with white matter pathology culminating in a marked cognitive impairment, which were all protected by Nox2 genetic deletion. Neurovascular coupling was impaired in WT mice post-BCAS and restored in Nox2 KO mice. Increased vascular expression of chemoattractant mediators, cell-adhesion molecules and endothelial activation factors in WT mice post-BCAS were ameliorated by Nox2 deficiency. The clinical relevance was confirmed by increased vascular Nox2 and indices of microvascular inflammation in human post-mortem subjects with cerebral vascular disease. Our results support Nox2 activity as a critical determinant of VCI, whose targeting may be of therapeutic benefit in cerebral vascular disease
- …
