2,395 research outputs found
From quantum fusiliers to high-performance networks
Our objective was to design a quantum repeater capable of achieving one
million entangled pairs per second over a distance of 1000km. We failed, but
not by much. In this letter we will describe the series of developments that
permitted us to approach our goal. We will describe a mechanism that permits
the creation of entanglement between two qubits, connected by fibre, with
probability arbitrarily close to one and in constant time. This mechanism may
be extended to ensure that the entanglement has high fidelity without
compromising these properties. Finally, we describe how this may be used to
construct a quantum repeater that is capable of creating a linear quantum
network connecting two distant qubits with high fidelity. The creation rate is
shown to be a function of the maximum distance between two adjacent quantum
repeaters.Comment: 2 figures, Comments welcom
Universality, limits and predictability of gold-medal performances at the Olympic Games
Inspired by the Games held in ancient Greece, modern Olympics represent the
world's largest pageant of athletic skill and competitive spirit. Performances
of athletes at the Olympic Games mirror, since 1896, human potentialities in
sports, and thus provide an optimal source of information for studying the
evolution of sport achievements and predicting the limits that athletes can
reach. Unfortunately, the models introduced so far for the description of
athlete performances at the Olympics are either sophisticated or unrealistic,
and more importantly, do not provide a unified theory for sport performances.
Here, we address this issue by showing that relative performance improvements
of medal winners at the Olympics are normally distributed, implying that the
evolution of performance values can be described in good approximation as an
exponential approach to an a priori unknown limiting performance value. This
law holds for all specialties in athletics-including running, jumping, and
throwing-and swimming. We present a self-consistent method, based on normality
hypothesis testing, able to predict limiting performance values in all
specialties. We further quantify the most likely years in which athletes will
breach challenging performance walls in running, jumping, throwing, and
swimming events, as well as the probability that new world records will be
established at the next edition of the Olympic Games.Comment: 8 pages, 3 figures, 1 table. Supporting information files and data
are available at filrad.homelinux.or
Spatially Resolved Magnetic Field Structure in the Disk of a T Tauri Star
Magnetic fields in accretion disks play a dominant role during the star
formation process but have hitherto been observationally poorly constrained.
Field strengths have been inferred on T Tauri stars themselves and possibly in
the innermost part of the accretion disk, but the strength and morphology of
the field in the bulk of the disk have not been observed. Unresolved
measurements of polarized emission (arising from elongated dust grains aligned
perpendicular to the field) imply average fields aligned with the disks.
Theoretically, the fields are expected to be largely toroidal, poloidal, or a
mixture of the two, which imply different mechanisms for transporting angular
momentum in the disks of actively accreting young stars such as HL Tau. Here we
report resolved measurements of the polarized 1.25 mm continuum emission from
HL Tau's disk. The magnetic field on a scale of 80 AU is coincident with the
major axis (~210 AU diameter) of the disk. From this we conclude that the
magnetic field inside the disk at this scale cannot be dominated by a vertical
component, though a purely toroidal field does not fit the data well either.
The unexpected morphology suggests that the magnetic field's role for the
accretion of a T Tauri star is more complex than the current theoretical
understanding.Comment: Accepted for publication in Natur
Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk
Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, resequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D= 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. © 2008 Ding et al
Electronic measurement and control of spin transport in Silicon
The electron spin lifetime and diffusion length are transport parameters that
define the scale of coherence in spintronic devices and circuits. Since these
parameters are many orders of magnitude larger in semiconductors than in
metals, semiconductors could be the most suitable for spintronics. Thus far,
spin transport has only been measured in direct-bandgap semiconductors or in
combination with magnetic semiconductors, excluding a wide range of
non-magnetic semiconductors with indirect bandgaps. Most notable in this group
is silicon (Si), which (in addition to its market entrenchment in electronics)
has long been predicted a superior semiconductor for spintronics with enhanced
lifetime and diffusion length due to low spin-orbit scattering and lattice
inversion symmetry. Despite its exciting promise, a demonstration of coherent
spin transport in Si has remained elusive, because most experiments focused on
magnetoresistive devices; these methods fail because of universal impedance
mismatch obstacles, and are obscured by Lorentz magnetoresistance and Hall
effects. Here we demonstrate conduction band spin transport across 10 microns
undoped Si, by using spin-dependent ballistic hot-electron filtering through
ferromagnetic thin films for both spin-injection and detection. Not based on
magnetoresistance, the hot electron spin-injection and detection avoids
impedance mismatch issues and prevents interference from parasitic effects. The
clean collector current thus shows independent magnetic and electrical control
of spin precession and confirms spin coherent drift in the conduction band of
silicon.Comment: Single PDF file with 4 Figure
Biopsy confirmation of metastatic sites in breast cancer patients:clinical impact and future perspectives
Determination of hormone receptor (estrogen receptor and progesterone receptor) and human epidermal growth factor receptor 2 status in the primary tumor is clinically relevant to define breast cancer subtypes, clinical outcome,and the choice of therapy. Retrospective and prospective studies suggest that there is substantial discordance in receptor status between primary and recurrent breast cancer. Despite this evidence and current recommendations,the acquisition of tissue from metastatic deposits is not routine practice. As a consequence, therapeutic decisions for treatment in the metastatic setting are based on the features of the primary tumor. Reasons for this attitude include the invasiveness of the procedure and the unreliable outcome of biopsy, in particular for biopsies of lesions at complex visceral sites. Improvements in interventional radiology techniques mean that most metastatic sites are now accessible by minimally invasive methods, including surgery. In our opinion, since biopsies are diagnostic and changes in biological features between the primary and secondary tumors can occur, the routine biopsy of metastatic disease needs to be performed. In this review, we discuss the rationale for biopsy of suspected breast cancer metastases, review issues and caveats surrounding discordance of biomarker status between primary and metastatic tumors, and provide insights for deciding when to perform biopsy of suspected metastases and which one (s) to biopsy. We also speculate on the future translational implications for biopsy of suspected metastatic lesions in the context of clinical trials and the establishment of bio-banks of biopsy material taken from metastatic sites. We believe that such bio-banks will be important for exploring mechanisms of metastasis. In the future,advances in targeted therapy will depend on the availability of metastatic tissue
SCAMP:standardised, concentrated, additional macronutrients, parenteral nutrition in very preterm infants: a phase IV randomised, controlled exploratory study of macronutrient intake, growth and other aspects of neonatal care
<p>Abstract</p> <p>Background</p> <p>Infants born <29 weeks gestation are at high risk of neurocognitive disability. Early postnatal growth failure, particularly head growth, is an important and potentially reversible risk factor for impaired neurodevelopmental outcome. Inadequate nutrition is a major factor in this postnatal growth failure, optimal protein and calorie (macronutrient) intakes are rarely achieved, especially in the first week. Infants <29 weeks are dependent on parenteral nutrition for the bulk of their nutrient needs for the first 2-3 weeks of life to allow gut adaptation to milk digestion. The prescription, formulation and administration of neonatal parenteral nutrition is critical to achieving optimal protein and calorie intake but has received little scientific evaluation. Current neonatal parenteral nutrition regimens often rely on individualised prescription to manage the labile, unpredictable biochemical and metabolic control characteristic of the early neonatal period. Individualised prescription frequently fails to translate into optimal macronutrient delivery. We have previously shown that a standardised, concentrated neonatal parenteral nutrition regimen can optimise macronutrient intake.</p> <p>Methods</p> <p>We propose a single centre, randomised controlled exploratory trial of two standardised, concentrated neonatal parenteral nutrition regimens comparing a standard macronutrient content (maximum protein 2.8 g/kg/day; lipid 2.8 g/kg/day, dextrose 10%) with a higher macronutrient content (maximum protein 3.8 g/kg/day; lipid 3.8 g/kg/day, dextrose 12%) over the first 28 days of life. 150 infants 24-28 completed weeks gestation and birthweight <1200 g will be recruited. The primary outcome will be head growth velocity in the first 28 days of life. Secondary outcomes will include a) auxological data between birth and 36 weeks corrected gestational age b) actual macronutrient intake in first 28 days c) biomarkers of biochemical and metabolic tolerance d) infection biomarkers and other intravascular line complications e) incidence of major complications of prematurity including mortality f) neurodevelopmental outcome at 2 years corrected gestational age</p> <p>Trial registration</p> <p>Current controlled trials: <a href="http://www.controlled-trials.com/ISRCTN76597892">ISRCTN76597892</a>; EudraCT Number: 2008-008899-14</p
Physical Activity, Sedentary Time and Physical Capability in Early Old Age: British Birth Cohort Study
Purpose
To investigate the associations of time spent sedentary, in moderate-to-vigorous-intensity physical activity (MVPA) and physical activity energy expenditure (PAEE) with physical capability measures at age 60-64 years.
Methods
Time spent sedentary and in MVPA and, PAEE were assessed using individually calibrated combined heart rate and movement sensing among 1727 participants from the MRC National Survey of Health and Development in England, Scotland and Wales as part of a detailed clinical assessment undertaken in 2006-2010. Multivariable linear regression models were used to examine the cross-sectional associations between standardised measures of each of these behavioural variables with grip strength, chair rise and timed up-&-go (TUG) speed and standing balance time.
Results
Greater time spent in MVPA was associated with higher levels of physical capability; adjusted mean differences in each capability measure per 1standard deviation increase in MVPA time were: grip strength (0.477 kg, 95% confidence interval (CI): 0.015 to 0.939), chair rise speed (0.429 stands/min, 95% CI: 0.093 to 0.764), standing balance time (0.028 s, 95% CI: 0.003 to 0.053) and TUG speed (0.019 m/s, 95% CI: 0.011 to 0.026). In contrast, time spent sedentary was associated with lower grip strength (-0.540 kg, 95% CI: -1.013 to -0.066) and TUG speed (-0.011 m/s, 95% CI: -0.019 to -0.004). Associations for PAEE were similar to those for MVPA.
Conclusion
Higher levels of MVPA and overall physical activity (PAEE) are associated with greater levels of physical capability whereas time spent sedentary is associated with lower levels of capability. Future intervention studies in older adults should focus on both the promotion of physical activity and reduction in time spent sedentary
Asthma prescribing, ethnicity and risk of hospital admission: an analysis of 35,864 linked primary and secondary care records in East London
This work was partly supported by funding from the Asthma UK Centre for Applied Research
Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.
BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution
- …
