58 research outputs found

    Ecological risk assessments to guide decision-making: Methodology matters

    Get PDF
    Ecological risk assessment is often applied to guide the decision-making process that underpins ecosystem-based management and prioritisation of risk factors for management. Several studies have recently used ecological risk assessment approaches to identify risk factors of greatest concern, but rarely are the underlying methodological decisions discussed in terms of the effect that those decisions have on the outcome of the assessment and ultimately, how that affects prioritisation of risk factors for management. This study therefore evaluates the effect of methodological decisions involving (1) the choice and definition of risk factors, and (2) the calculation of risk scores, providing, where possible, recommendations on what should be the most appropriate methodologies. The definition of risk factors is often determined by the policy context and could result in the comparison of one broadly defined risk meta-factor (e.g. Food Production) with corresponding specific risk factors defined more narrowly (i.e. Oil and Gas production or Offshore Wind). Depending on the method to calculate risk this may result in a systematic bias prioritising any risk meta-factor. For the calculation of individual impact chain risk scores we compared weighted scores with ordinal scores, where the former allows more flexibility to represent the qualitative categories that determine risk and provided results better supported by scientific evidence. A consideration of different risk assessment applications in EBM showed there is no one-size-fits-all solution to this as these methodological decisions need to be considered in concert and the preferred methodology may depend on the context in which the risk assessment is applied. The outcome of the risk assessment should always be accompanied by an explicit consideration of these methodological issues and description of the resulting methodological choices

    Evaluation of ecosystem-based marine management strategies based on risk assessment

    Get PDF
    Abstract This study presents a comprehensive and generic framework that provides a typology for the identification and selection of consistently defined ecosystem-based management measures and allows a coherent evaluation of these measures based on their performance to achieve policy objectives. The performance is expressed in terms of their reduction of risk of an adverse impact on the marine ecosystem. This typology consists of two interlinked aspects of a measure, i.e. the “Focus” and the “Type”. The “Focus” is determined by the part of the impact chain (Driver–Pressure–State) the measure is supposed to mitigate or counteract. The “Type” represents the physical measure itself in terms of how it affects the impact chain directly; we distinguish Spatio-temporal distribution controls, Input and Output controls, Remediation and Restoration measures. The performance of these measures in terms of their reduction in risk of adverse impacts was assessed based on an explicit consideration of three time horizons: past, present and future. Application of the framework in an integrated management strategy evaluation of a suite of measures, shows that depending on the time horizon, different measures perform best. “Past” points to measures targeting persistent pressures (e.g. marine litter) from past activities. “Present” favors measures targeting a driver (e.g. fisheries) that has a high likelihood of causing adverse impacts. “Future” involves impacts that both have a high likelihood of an adverse impact, as well as a long time to return to pre-impacted condition after the implementation of appropriate management, e.g. those caused by permanent infrastructure or persistent pressures such as marine litter or specific types of pollution

    Evaluation of ecosystem-based marine management strategies based on risk assessment

    Get PDF
    This study presents a comprehensive and generic framework that provides a typology for the identification and selection of consistently defined ecosystem-based management measures and allows a coherent evaluation of these measures based on their performance to achieve policy objectives. The performance is expressed in terms of their reduction of risk of an adverse impact on the marine ecosystem. This typology consists of two interlinked aspects of a measure, i.e. the Focus and the Type . The Focus is determined by the part of the impact chain (Driver-Pressure-State) the measure is supposed to mitigate or counteract. The Type represents the physical measure itself in terms of how it affects the impact chain directly; we distinguish Spatio-temporal distribution controls, Input and Output controls, Remediation and Restoration measures. The performance of these measures in terms of their reduction in risk of adverse impacts was assessed based on an explicit consideration of three time horizons: past, present and future. Application of the framework in an integrated management strategy evaluation of a suite of measures, shows that depending on the time horizon, different measures perform best. Past points to measures targeting persistent pressures (e.g. marine litter) from past activities. Present favors measures targeting a driver (e.g. fisheries) that has a high likelihood of causing adverse impacts. Future involves impacts that both have a high likelihood of an adverse impact, as well as a long time to return to pre-impacted condition after the implementation of appropriate management, e.g. those caused by permanent infrastructure or persistent pressures such as marine litter or specific types of pollution

    An exposure-effect approach for evaluating ecosystem-wide risks from human activities

    Get PDF
    Ecosystem-based management (EBM) is promoted as the solution for sustainable use. An ecosystem-wide assessment methodology is therefore required. In this paper, we present an approach to assess the risk to ecosystem components from human activities common to marine and coastal ecosystems. We build on: (i) a linkage framework that describes how human activities can impact the ecosystem through pressures, and (ii) a qualitative expert judgement assessment of impact chains describing the exposure and sensitivity of ecological components to those activities. Using case study examples applied at European regional sea scale, we evaluate the risk of an adverse ecological impact from current human activities to a suite of ecological components and, once impacted, the time required for recovery to pre-impact conditions should those activities subside. Grouping impact chains by sectors, pressure type, or ecological components enabled impact risks and recovery times to be identified, supporting resource managers in their efforts to prioritize threats for management, identify most at-risk components, and generate time frames for ecosystem recovery

    Play and Developmental Outcomes in Infant Siblings of Children with Autism

    Get PDF
    We observed infant siblings of children with autism later diagnosed with ASD (ASD siblings; n = 17), infant siblings of children with autism with and without other delays (Other Delays and No Delays siblings; n = 12 and n = 19, respectively) and typically developing controls (TD controls; n = 19) during a free-play task at 18 months of age. Functional, symbolic, and repeated play actions were coded. ASD siblings showed fewer functional and more non-functional repeated play behaviors than TD controls. Other Delays and No Delays siblings showed more non-functional repeated play than TD controls. Group differences disappeared with the inclusion of verbal mental age. Play as an early indicator of autism and its relationship to the broader autism phenotype is discussed

    Plant–soil feedback of native and range-expanding plant species is insensitive to temperature

    Get PDF
    Temperature change affects many aboveground and belowground ecosystem processes. Here we investigate the effect of a 5°C temperature increase on plant–soil feedback. We compare plant species from a temperate climate region with immigrant plants that originate from warmer regions and have recently shifted their range polewards. We tested whether the magnitude of plant–soil feedback is affected by ambient temperature and whether the effect of temperature differs between these groups of plant species. Six European/Eurasian plant species that recently colonized the Netherlands (non-natives), and six related species (natives) from the Netherlands were selected. Plant–soil feedback of these species was determined by comparing performance in conspecific and heterospecific soils. In order to test the effect of temperature on these plant–soil feedback interactions, the experiments were performed at two greenhouse temperatures of 20/15°C and 25/20°C, respectively. Inoculation with unconditioned soil had the same effect on natives and non-natives. However, the effect of conspecific conditioned soil was negative compared to heterospecific soil for natives, but was positive for non-natives. In both cases, plant–soil interactions were not affected by temperature. Therefore, we conclude that the temperature component of climate change does not affect the direction, or strength of plant–soil feedback, neither for native nor for non-native plant species. However, as the non-natives have a more positive soil feedback than natives, climate warming may introduce new plant species in temperate regions that have less soil-borne control of abundance

    Greek identity in Australia

    No full text
    The Greek diaspora community is well-established in Australia. While arrivals from Greece began in the nineteenth century and continued through the twentieth, peak migration occurred in the years following World War II and the Greek Civil War. Today people of Greek background are highly integrated into the mainstream of Australian society and culture. Nonetheless, the characteristics that are most closely associated with cultural identity, specifically the Greek language, membership in the Greek Orthodox Church, and a Greek lifestyle, are still prominent among members and tend to be viewed as extremely important, even by younger individuals. Older members of the community experienced considerable racism and exclusion, but this has now faded, and younger people tend to see themselves as possessing a dual identity as Greek and also fully Australian. As the Australian-born generations come to dominate the Greek community, an increasing shift from Greek to English has been observed, with many younger people lacking the fluency their parents (the transitional generation) usually possess. This, along with an attitude of pride and acceptance of their cultural heritage, is helping to create a new Greek identity that derives not just from individuals’ own experiences in Australia but also from travel to Greece and interaction on the Internet with members of other diaspora communities elsewhere in the world as well as with people in Greece. The result is a conceptualization of Greek identity that is both more transnational in nature but also more characteristically Australian, reflecting the established nature of people of Greek background within the English-speaking Australian mainstream
    corecore