345 research outputs found
Experimental modulation of capsule size in Cryptococcus neoformans
Experimental modulation of capsule size is an important technique for the study of the virulence of the encapsulated pathogen Cryptococcus neoformans. In this paper, we summarize the techniques available for experimental modulation of capsule size in this yeast and describe improved methods to induce capsule size changes. The response of the yeast to the various stimuli is highly dependent on the cryptococcal strain. A high CO(2) atmosphere and a low iron concentration have been used classically to increase capsule size. Unfortunately, these stimuli are not reliable for inducing capsular enlargement in all strains. Recently we have identified new and simpler conditions for inducing capsule enlargement that consistently elicited this effect. Specifically, we noted that mammalian serum or diluted Sabouraud broth in MOPS buffer pH 7.3 efficiently induced capsule growth. Media that slowed the growth rate of the yeast correlated with an increase in capsule size. Finally, we summarize the most commonly used media that induce capsule growth in C. neoformans
Type Ia Supernova Explosion Models
Because calibrated light curves of Type Ia supernovae have become a major
tool to determine the local expansion rate of the Universe and also its
geometrical structure, considerable attention has been given to models of these
events over the past couple of years. There are good reasons to believe that
perhaps most Type Ia supernovae are the explosions of white dwarfs that have
approached the Chandrasekhar mass, M_ch ~ 1.39 M_sun, and are disrupted by
thermonuclear fusion of carbon and oxygen. However, the mechanism whereby such
accreting carbon-oxygen white dwarfs explode continues to be uncertain. Recent
progress in modeling Type Ia supernovae as well as several of the still open
questions are addressed in this review. Although the main emphasis will be on
studies of the explosion mechanism itself and on the related physical
processes, including the physics of turbulent nuclear combustion in degenerate
stars, we also discuss observational constraints.Comment: 38 pages, 4 figures, Annual Review of Astronomy and Astrophysics, in
pres
Tuning fresh: radiation through rewiring of central metabolism in streamlined bacteria
Most free-living planktonic cells are streamlined and in spite of their limitations in functional flexibility, their vast populations have radiated into a wide range of aquatic habitats. Here we compared the metabolic potential of subgroups in the Alphaproteobacteria lineage SAR11 adapted to marine and freshwater habitats. Our results suggest that the successful leap from marine to freshwaters in SAR11 was accompanied by a loss of several carbon degradation pathways and a rewiring of the central metabolism. Examples for these are C1 and methylated compounds degradation pathways, the Entner–Doudouroff pathway, the glyoxylate shunt and anapleuretic carbon fixation being absent from the freshwater genomes. Evolutionary reconstructions further suggest that the metabolic modules making up these important freshwater metabolic traits were already present in the gene pool of ancestral marine SAR11 populations. The loss of the glyoxylate shunt had already occurred in the common ancestor of the freshwater subgroup and its closest marine relatives, suggesting that the adaptation to freshwater was a gradual process. Furthermore, our results indicate rapid evolution of TRAP transporters in the freshwater clade involved in the uptake of low molecular weight carboxylic acids. We propose that such gradual tuning of metabolic pathways and transporters toward locally available organic substrates is linked to the formation of subgroups within the SAR11 clade and that this process was critical for the freshwater clade to find and fix an adaptive phenotype.This work was supported by the Swedish Research Council (Grant Numbers 2012-4592 to AE and 2012-3892 to SB) and the Communiy Sequencing Programme of the US Department of Energy Joint Genome Institute. The work conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231
Transcriptional Evidence for the Role of Chronic Venlafaxine Treatment in Neurotrophic Signaling and Neuroplasticity Including also Glutatmatergic- and Insulin-Mediated Neuronal Processes.
OBJECTIVES: Venlafaxine (VLX), a serotonine-noradrenaline reuptake inhibitor, is one of the most commonly used antidepressant drugs in clinical practice for the treatment of major depressive disorder (MDD). Despite being more potent than its predecessors, similarly to them, the therapeutical effect of VLX is visible only 3-4 weeks after the beginning of treatment. Furthermore, recent papers show that antidepressants, including also VLX, enhance the motor recovery after stroke even in non depressed persons. In the present, transcriptomic-based study we looked for changes in gene expressions after a long-term VLX administration. METHODS: Osmotic minipumps were implanted subcutaneously into Dark Agouti rats providing a continuous (40 mg/kg/day) VLX delivery for three weeks. Frontal regions of the cerebral cortex were isolated and analyzed using Illumina bead arrays to detect genes showing significant chances in expression. Gene set enrichment analysis was performed to identify specific regulatory networks significantly affected by long term VLX treatment. RESULTS: Chronic VLX administration may have an effect on neurotransmitter release via the regulation of genes involved in vesicular exocytosis and receptor endocytosis (such as Kif proteins, Myo5a, Sv2b, Syn2 or Synj2). Simultaneously, VLX activated the expression of genes involved in neurotrophic signaling (Ntrk2, Ntrk3), glutamatergic transmission (Gria3, Grin2b and Grin2a), neuroplasticity (Camk2g/b, Cd47), synaptogenesis (Epha5a, Gad2) and cognitive processes (Clstn2). Interestingly, VLX increased the expression of genes involved in mitochondrial antioxidant activity (Bcl2 and Prdx1). Additionally, VLX administration also modulated genes related to insulin signaling pathway (Negr1, Ppp3r1, Slc2a4 and Enpp1), a mechanism that has recently been linked to neuroprotection, learning and memory. CONCLUSIONS: Our results strongly suggest that chronic VLX treatment improves functional reorganization and brain plasticity by influencing gene expression in regulatory networks of motor cortical areas. These results are consonant with the synaptic (network) hypothesis of depression and antidepressant-induced motor recovery after stroke
Spatial variation of trace metals within intertidal beds of native mussels (Mytilus edulis) and non-native Pacific oysters (Crassostrea gigas): implications for the food web?
Abstract Pollution is of increasing concern within coastal regions and the prevalence of invasive species is also rising. Yet the impact of invasive species on the distribution and potential trophic transfer of metals has rarely been examined. Within European intertidal areas, the non-native Pacific oyster (Crassostrea gigas) is becoming established, forming reefs and displacing beds of the native blue mussel (Mytilus edulis). The main hypothesis tested is that the spatial pattern of metal accumulation within intertidal habitats will change should the abundance and distribution of C. gigas continue to increase. A comparative analysis of trace metal content (cadmium, lead, copper and zinc) in both species was carried out at four shores in south-east England. Metal concentrations in bivalve and sediment samples were determined after acid digestion by inductively coupled plasma-optical emission spectrometry. Although results showed variation in the quantities of zinc, copper and lead (mg m-2) in the two bivalve species, differences in shell thickness are also likely to influence the feeding behaviour of predators and intake of metals. The availability and potential for trophic transfer of metals within the coastal food web, should Pacific oysters transform intertidal habitats, is discussed
Low oxygen affects photophysiology and the level of expression of two-carbon metabolism genes in the seagrass <i>Zostera muelleri</i>
© 2017, Springer Science+Business Media B.V. Seagrasses are a diverse group of angiosperms that evolved to live in shallow coastal waters, an environment regularly subjected to changes in oxygen, carbon dioxide and irradiance. Zostera muelleri is the dominant species in south-eastern Australia, and is critical for healthy coastal ecosystems. Despite its ecological importance, little is known about the pathways of carbon fixation in Z. muelleri and their regulation in response to environmental changes. In this study, the response of Z. muelleri exposed to control and very low oxygen conditions was investigated by using (i) oxygen microsensors combined with a custom-made flow chamber to measure changes in photosynthesis and respiration, and (ii) reverse transcription quantitative real-time PCR to measure changes in expression levels of key genes involved in C4 metabolism. We found that very low levels of oxygen (i) altered the photophysiology of Z. muelleri, a characteristic of C3 mechanism of carbon assimilation, and (ii) decreased the expression levels of phosphoenolpyruvate carboxylase and carbonic anhydrase. These molecular-physiological results suggest that regulation of the photophysiology of Z. muelleri might involve a close integration between the C3 and C4, or other CO2 concentrating mechanisms metabolic pathways. Overall, this study highlights that the photophysiological response of Z. muelleri to changing oxygen in water is capable of rapid acclimation and the dynamic modulation of pathways should be considered when assessing seagrass primary production
Induction of Tachykinin Production in Airway Epithelia in Response to Viral Infection
The tachykinins are implicated in neurogenic inflammation and the neuropeptide substance P in particular has been shown to be a proinflammatory mediator. A role for the tachykinins in host response to lung challenge has been previously demonstrated but has been focused predominantly on the release of the tachykinins from nerves innervating the lung. We have previously demonstrated the most dramatic phenotype described for the substance P encoding gene preprotachykinin-A (PPT-A) to date in controlling the host immune response to the murine gammaherpesvirus 68, in the lung.In this study we have utilised transgenic mice engineered to co-ordinately express the beta-galactosidase marker gene along with PPT-A to facilitate the tracking of PPT-A expression. Using a combination of these mice and conventional immunohistology we now demonstrate that PPT-A gene expression and substance P peptide are induced in cells of the respiratory tract including tracheal, bronchiolar and alveolar epithelial cells and macrophages after viral infection. This induction was observed 24h post infection, prior to observable inflammation and the expression of pro-inflammatory chemokines in this model. Induced expression of the PPT-A gene and peptide persisted in the lower respiratory tract through day 7 post infection.Non-neuronal PPT-A expression early after infection may have important clinical implications for the progression or management of lung disease or infection aside from the well characterised later involvement of the tachykinins during the inflammatory response
Partial Depletion of Natural CD4+CD25+ Regulatory T Cells with Anti-CD25 Antibody Does Not Alter the Course of Acute Influenza A Virus Infection
Foxp3+ CD4+ regulatory T cells represent a T cell subset with well-characterized immunosuppressive effects during immune homeostasis and chronic infections, and there is emerging evidence to suggest these cells temper pulmonary inflammation in response to acute viral infection. Recent studies have demonstrated treatment with PC61 CD25-depleting antibody potentiates inflammation in a murine model of RSV infection, while paradoxically delaying recruitment of CD8+ T cells to the site of inflammation. The present study therefore sought to examine the role of these cells in a murine model of acute influenza A virus infection through the administration of PC61 CD25-depleting antibody. PC61 antibody is able to partially deplete CD25+Foxp3+ regulatory T cells to a comparable degree as seen within previous work examining RSV, however this does not alter influenza A-virus induced mortality, weight loss, viral clearance and cellularity within the lung. Collectively, these data demonstrate that partial depletion of CD4+CD25+ regulatory T cells with PC61 antibody does not alter the course of influenza A virus infection
High density of peritumoral lymphatic vessels is a potential prognostic marker of endometrial carcinoma: a clinical immunohistochemical method study
<p>Abstract</p> <p>Background</p> <p>The lymphatic system is a major route for cancer cell dissemination and also a potential target for antitumor therapy. To investigate whether increased lymphatic vessel density (LVD) is a prognostic factor for nodal metastasis and survival, we studied peritumoral LVD (P-LVD) and intratumoral LVD (I-LVD) in samples from 102 patients with endometrial carcinoma;</p> <p>Methods</p> <p>Endometrial carcinoma tissues were analyzed for lymphatic vessels by immunohistochemical staining with an antibody against LYVE-1. Univariate analysis was performed with Kaplan-Meier life-table curves to estimate survival, and was compared using the log rank test. Prognostic models used multivariate Cox regression analysis for multivariate analyses of survival;</p> <p>Results</p> <p>Our study showed that P-LVD, but not I-LVD, was significantly correlated with lymph vascular space invasion (LVSI), lymph node metastasis, tumor stage, and CD44 expression in endometrial carcinoma. Moreover, P-LVD was an independent prognostic factor for progression-free survival and overall survival of endometrial carcinoma;</p> <p>Conclusions</p> <p>P-LVD may serve as a prognostic factor for endometrial carcinoma. The peritumoral lymphatics might play an important role in lymphatic vessel metastasis.</p
Nanostructured Silver Substrates With Stable and Universal SERS Properties: Application to Organic Molecules and Semiconductor Nanoparticles
Nanostructured silver films have been prepared by thermal deposition on silicon, and their properties as SERS substrates investigated. The optimal conditions of the post-growth annealing of the substrates were established. Atomic force microscopy study revealed that the silver films with relatively dense and homogeneous arrays of 60–80-nm high pyramidal nanoislands are the most efficient for SERS of both organic dye and inorganic nanoparticles analytes. The noticeable enhancement of the Raman signal from colloidal nanoparticles with the help of silver island films is reported for the first time
- …
