4 research outputs found

    Ecosystem processes drive dissolved organic matter quality in a highly dynamic water body

    No full text
    The complexity and variability of processes determining dissolved organic matter (DOM) quality is likely to increase in highly dynamic systems such as Mediterranean water bodies. We studied the dynamics of DOM in a Mediterranean lagoon dominated by seasonal submerged vegetation and receiving torrential freshwater inputs. In order to trace changes in DOM quality throughout the year in relation with potential DOM sources, we used spectroscopic techniques including UV-visible absorbance and fluorescence excitation-emission matrices. The quality of the lagoon DOM fluctuates on a seasonal basis between the characteristics of torrential inputs and macrophytes. Humification and aromaticity of DOM increased markedly after the torrential inputs of materials derived from terrestrial vegetation and soils in the catchment. The macrophytes in the lagoon contributed with less humified materials and protein-like compounds. Other minor processes such as seawater entrances, photodegradation or temporary bottom hypoxia translated into sporadic DOM quality changes. These results highlight the need of a whole ecosystem approach to understand changes in DOM quality due to ecosystem processes that might otherwise be exclusively attributed to DOM reactivity. © 2014 Springer International Publishing Switzerland.This study was funded by the project CGL 2008-05095/BOS, from the Ministerio de Ciencia e Innovación (Spain). NC held a doctoral fellowship (FI 2010–2013) from the Generalitat de Catalunya and is currently sustained by the unemployment allowance of the Spanish Public Employment Service (SEPE).Peer reviewe

    When Water Vanishes: Magnitude and Regulation of Carbon Dioxide Emissions from Dry Temporary Streams

    No full text
    Most fluvial networks worldwide include watercourses that recurrently cease to flow and run dry. The spatial and temporal extent of the dry phase of these temporary watercourses is increasing as a result of global change. Yet, current estimates of carbon emissions from fluvial networks do not consider temporary watercourses when they are dry. We characterized the magnitude and variability of carbon emissions from dry watercourses by measuring the carbon dioxide (CO2) flux from 10 dry streambeds of a fluvial network during the dry period and comparing it to the CO2 flux from the same streambeds during the flowing period and to the CO2 flux from their adjacent upland soils. We also looked for potential drivers regulating the CO2 emissions by examining the main physical and chemical properties of dry streambed sediments and adjacent upland soils. The CO2 efflux from dry streambeds (mean ± SD = 781.4 ± 390.2 mmol m−2 day−1) doubled the CO2 efflux from flowing streambeds (305.6 ± 206.1 mmol m−2 day−1) and was comparable to the CO2 efflux from upland soils (896.1 ± 263.2 mmol m−2 day−1). However, dry streambed sediments and upland soils were physicochemically distinct and differed in the variables regulating their CO2 efflux. Overall, our results indicate that dry streambeds constitute a unique and biogeochemically active habitat that can emit significant amounts of CO2 to the atmosphere. Thus, omitting CO2 emissions from temporary streams when they are dry may overlook the role of a key component of the carbon balance of fluvial networks.This research was funded by the Spanish Ministry of Economy and Competitiveness through the Projects CGL2011-30474-C02-01 and CGL2014-58760-C3-1-R. Ll. Gómez-Gener and J. P. Casas-Ruiz were additionally supported by FPI predoctoral grants (BES-2012-059743 and BES-2012-059655). N. Catalán hold a Wenner-Gren post-doctoral grant (Sweden).Peer reviewe

    Schwingungen und Rotationen der Molekeln

    No full text

    Anaerobic Biodegradation of Hydrocarbons: Metagenomics and Metabolomics

    No full text
    corecore