3 research outputs found
The Transfer of Evolved Artificial Immune System Behaviours between Small and Large Scale Robotic Platforms
This paper demonstrates that a set of behaviours evolved in simulation on a
miniature robot (epuck) can be transferred to a much larger scale platform (a
virtual Pioneer P3-DX) that also differs in shape, sensor type, sensor
configuration and programming interface. The chosen architecture uses a
reinforcement learning-assisted genetic algorithm to evolve the epuck
behaviours, which are encoded as a genetic sequence. This sequence is then used
by the Pioneers as part of an adaptive, idiotypic artificial immune system
(AIS) control architecture. Testing in three different simulated worlds shows
that the Pioneer can use these behaviours to navigate and solve object-tracking
tasks successfully, as long as its adaptive AIS mechanism is in place.Comment: 12 pages, 3 figures, 2 tables, 9th International Conference on
Artificial Evolution (EA 09)
The efficient numerical solution of differential/algebraic boundary value problems arising in detonation modelling
SIGLEAvailable from British Library Document Supply Centre-DSC:DXN015540 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
