127 research outputs found

    Digital Quantum Simulation of the Statistical Mechanics of a Frustrated Magnet

    Full text link
    Many interesting problems in physics, chemistry, and computer science are equivalent to problems of interacting spins. However, most of these problems require computational resources that are out of reach by classical computers. A promising solution to overcome this challenge is to exploit the laws of quantum mechanics to perform simulation. Several "analog" quantum simulations of interacting spin systems have been realized experimentally. However, relying on adiabatic techniques, these simulations are limited to preparing ground states only. Here we report the first experimental results on a "digital" quantum simulation on thermal states; we simulated a three-spin frustrated magnet, a building block of spin ice, with an NMR quantum information processor, and we are able to explore the phase diagram of the system at any simulated temperature and external field. These results serve as a guide for identifying the challenges for performing quantum simulation on physical systems at finite temperatures, and pave the way towards large scale experimental simulations of open quantum systems in condensed matter physics and chemistry.Comment: 7 pages for the main text plus 6 pages for the supplementary material

    Voice-based assessments of trustworthiness, competence, and warmth in blind and sighted adults

    Get PDF
    The study of voice perception in congenitally blind individuals allows researchers rare insight into how a lifetime of visual deprivation affects the development of voice perception. Previous studies have suggested that blind adults outperform their sighted counterparts in low-level auditory tasks testing spatial localization and pitch discrimination, as well as in verbal speech processing; however, blind persons generally show no advantage in nonverbal voice recognition or discrimination tasks. The present study is the first to examine whether visual experience influences the development of social stereotypes that are formed on the basis of nonverbal vocal characteristics (i.e., voice pitch). Groups of 27 congenitally or early-blind adults and 23 sighted controls assessed the trustworthiness, competence, and warmth of men and women speaking a series of vowels, whose voice pitches had been experimentally raised or lowered. Blind and sighted listeners judged both men’s and women’s voices with lowered pitch as being more competent and trustworthy than voices with raised pitch. In contrast, raised-pitch voices were judged as being warmer than were lowered-pitch voices, but only for women’s voices. Crucially, blind and sighted persons did not differ in their voice-based assessments of competence or warmth, or in their certainty of these assessments, whereas the association between low pitch and trustworthiness in women’s voices was weaker among blind than sighted participants. This latter result suggests that blind persons may rely less heavily on nonverbal cues to trustworthiness compared to sighted persons. Ultimately, our findings suggest that robust perceptual associations that systematically link voice pitch to the social and personal dimensions of a speaker can develop without visual input

    Buber, educational technology, and the expansion of dialogic space

    Get PDF
    Buber’s distinction between the ‘I-It’ mode and the ‘I-Thou’ mode is seminal for dialogic education. While Buber introduces the idea of dialogic space, an idea which has proved useful for the analysis of dialogic education with technology, his account fails to engage adequately with the role of technology. This paper offers an introduction to the significance of the I-It/I-Thou duality of technology in relation to opening dialogic space. This is followed by a short schematic history of educational technology which reveals the role technology plays, not only in opening dialogic space, but also in expanding dialogic space. The expansion of dialogic space is an expansion of what it means to be ‘us’ as dialogic engagement facilitates the incorporation, into our shared sense of identity, of aspects of reality that are initially experienced as alien or ‘other’. Augmenting Buber with an alternative understanding of dialogic space enables us to see how dialogue mediated by technology, as well as dialogue with monologised fragments of technology (robots), can, through education, lead to an expansion of what it means to be human

    Medical Conditions of Nursing Home Admissions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As long-term nursing home care is likely to increase with the aging of the population, identifying chronic medical conditions is of particular interest. Although need factors have a strong impact on nursing home (NH) admission, the diseases causing these functional disabilities are lacking or unclear in the residents' file. We investigated the medical reason (primary diagnosis) of a nursing home admission with respect to the underlying disease.</p> <p>Methods</p> <p>This study is based on two independent, descriptive and comparative studies in Belgium and was conducted at two time points (1993 and 2005) to explore the evolution over twelve years. Data from the subjects were extracted from the resident's file; additional information was requested from the general practitioner, nursing home physician or the head nurse in a face-to-face interview. In 1993 we examined 1332 residents from 19 institutions, and in 2005 691 residents from 7 institutions. The diseases at the time of admission were mapped by means of the International Classification of Diseases - 9th edition (ICD-9). Longitudinal changes were assessed and compared by a chi-square test.</p> <p>Results</p> <p>The main chronic medical conditions associated with NH admission were dementia and stroke. Mental disorders represent 48% of all admissions, somatic disorders 43% and social/emotional problems 8%. Of the somatic disorders most frequently are mentioned diseases of the circulatory system (35%) [2/3 sequels of stroke and 1/5 heart failure], followed by diseases of the nervous system (15%) [mainly Parkinson's disease] and the musculoskeletal system (14%) [mainly osteoarthritis]. The most striking evolution from 1993 to 2005 consisted in complicated diabetes mellitus (from 4.3 to 11.4%; p < 0.0001) especially with amputations and blindness. Symptoms (functional limitations without specific disease) like dizziness, impaired vision and frailty are of relevance as an indicator of admission.</p> <p>Conclusion</p> <p>Diseases like stroke, diabetes and mobility problems are only important for institutionalisation if they cause functional disability. Diabetes related complications as cause of admission increased almost three-fold between 1993 and 2005.</p

    Broadband Coupling into a Single-Mode, Electroactive Integrated Optical Waveguide for Spectroelectrochemical Analysis of Surface-Confined Redox Couples

    Get PDF
    Pushing the sensitivity of spectroelectrochemical techniques to routinely monitor changes in spectral properties of thin molecular films (i.e., monolayer or submonolayer) adsorbed on an electrode surface has been a goal of many investigators since the earliest developments in this field. 1 It was initially recognized that exploiting the evanescent field generated by total internal reflection at the interface of an optically transparent electrode (such as a thin film of tin oxide or indium tin oxide (ITO) on glass or quartz) has the inherent advantage of selectively probing only the near-surface region, as opposed to bulk sampling with transmission based techniques. Furthermore, by utilizing the multiple reflections in an attenuated total reflectance (ATR) geometry, an enhancement in sensitivity can be realized, and as the thickness of the ATR element is decreased, the number of reflections increases, yielding a substantial sensitivity enhancement. [2][3][4][5][6] Itoh and Fujishima were the first to show the advantages of reducing the thickness of an ATR element overcoated with a transparent conductive oxide to the integrated optical waveguide (IOW) regime. Using a four-mode, gradient index waveguide coated with a transparent, conductive tin oxide layer, they demonstrated large sensitivity enhancements, relative to a single pass transmission experiment, for spectroelectrochemical measurements of methylene blue. 7,8 Other research groups subsequently described similar gradient index, multilayer, electroactive waveguide structures, but they did not make use of the technology to explore the spectroelectrochemistry of (sub)monolayer coverage films. [9][10][11][12][13] We recently described a single-mode, electroactive planar IOW (the EA-IOW) having a step refractive index profile. It was fabricated by sputtering a Corning 7059 glass layer (400 nm) over soda lime glass or quartz, followed by a 200-nm layer of SiO 2

    Feasibility of a multidimensional home-based exercise programme for the elderly with structured support given by the general practitioner's surgery: Study protocol of a single arm trial preparing an RCT [ISRCTN58562962]

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physical activity programmes can help to prevent functional decline in the elderly. Until now, such programmes use to target either on healthy community-dwelling seniors or on elderly living in special residences or care institutions. Sedentary or frail people, however, are difficult to reach when they live in their own homes. The general practitioner's (GP) practice offers a unique opportunity to acquire these people for participation in activity programmes. We conceptualised a multidimensional home-based exercise programme that shall be delivered to the target group through cooperation between GPs and exercise therapists. In order to prepare a randomised controlled trial (RCT), a feasibility study is being conducted.</p> <p>Methods</p> <p>The study is designed as a single arm interventional trial. We plan to recruit 90 patients aged 70 years and above through their GPs. The intervention lasts 12 weeks and consists of physical activity counselling, a home-exercise programme, and exercise consultations provided by an exercise therapist in the GP's practice and via telephone. The exercise programme consists of two main components: 1. a combination of home-exercises to improve strength, flexibility and balance, 2. walking for exercise to improve aerobic capacity. Primary outcome measures are: appraisal by GP, undesirable events, drop-outs, adherence. Secondary outcome measures are: effects (a. motor tests: timed-up-and-go, chair rising, grip strength, tandem stand, tandem walk, sit-and-reach; b. telephone interview: PRISCUS-Physical Activity Questionnaire, Short Form-8 Health Survey, three month recall of frequency of falls, Falls Efficacy Scale), appraisal by participant, exercise performance, focus group discussion. Data analyses will focus on: 1. decision-making concerning the conduction of a RCT, 2. estimation of the effects of the programme, detection of shortcomings and identification of subgroups with contrary results, 3. feedback to participants and to GPs.</p> <p>Conclusion</p> <p>A new cooperation between GPs and exercise therapists to approach community-dwelling seniors and to deliver a home-exercise programme is object of research with regard to feasibility and acceptance. In case of success, an RCT should examine the effects of the programme. A future implementation within primary medical care may take advantage from the flexibility of the programme.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN58562962.</p

    History-Dependent Excitability as a Single-Cell Substrate of Transient Memory for Information Discrimination

    Get PDF
    Neurons react differently to incoming stimuli depending upon their previous history of stimulation. This property can be considered as a single-cell substrate for transient memory, or context-dependent information processing: depending upon the current context that the neuron “sees” through the subset of the network impinging on it in the immediate past, the same synaptic event can evoke a postsynaptic spike or just a subthreshold depolarization. We propose a formal definition of History-Dependent Excitability (HDE) as a measure of the propensity to firing in any moment in time, linking the subthreshold history-dependent dynamics with spike generation. This definition allows the quantitative assessment of the intrinsic memory for different single-neuron dynamics and input statistics. We illustrate the concept of HDE by considering two general dynamical mechanisms: the passive behavior of an Integrate and Fire (IF) neuron, and the inductive behavior of a Generalized Integrate and Fire (GIF) neuron with subthreshold damped oscillations. This framework allows us to characterize the sensitivity of different model neurons to the detailed temporal structure of incoming stimuli. While a neuron with intrinsic oscillations discriminates equally well between input trains with the same or different frequency, a passive neuron discriminates better between inputs with different frequencies. This suggests that passive neurons are better suited to rate-based computation, while neurons with subthreshold oscillations are advantageous in a temporal coding scheme. We also address the influence of intrinsic properties in single-cell processing as a function of input statistics, and show that intrinsic oscillations enhance discrimination sensitivity at high input rates. Finally, we discuss how the recognition of these cell-specific discrimination properties might further our understanding of neuronal network computations and their relationships to the distribution and functional connectivity of different neuronal types

    MicroRNA-mediated drug resistance in breast cancer

    Get PDF
    Chemoresistance is one of the major hurdles to overcome for the successful treatment of breast cancer. At present, there are several mechanisms proposed to explain drug resistance to chemotherapeutic agents, including decreased intracellular drug concentrations, mediated by drug transporters and metabolic enzymes; impaired cellular responses that affect cell cycle arrest, apoptosis, and DNA repair; the induction of signaling pathways that promote the progression of cancer cell populations; perturbations in DNA methylation and histone modifications; and alterations in the availability of drug targets. Both genetic and epigenetic theories have been put forward to explain the mechanisms of drug resistance. Recently, a small non-coding class of RNAs, known as microRNAs, has been identified as master regulators of key genes implicated in mechanisms of chemoresistance. This article reviews the role of microRNAs in regulating chemoresistance and highlights potential therapeutic targets for reversing miRNA-mediated drug resistance. In the future, microRNA-based treatments, in combination with traditional chemotherapy, may be a new strategy for the clinical management of drug-resistant breast cancers
    corecore