18,494 research outputs found
On the selection and design of proteins and peptide derivatives for the production of photoluminescent, red-emitting gold quantum clusters
Novel pathways of the synthesis of photoluminescent gold quantum clusters (AuQCs) using biomolecules as reactants provide biocompatible products for biological imaging techniques. In order to rationalize the rules for the preparation of red-emitting AuQCs in aqueous phase using proteins or peptides, the role of different organic structural units was investigated. Three systems were studied: proteins, peptides, and amino acid mixtures, respectively. We have found that cysteine and tyrosine are indispensable residues. The SH/S-S ratio in a single molecule is not a critical factor in the synthesis, but on the other hand, the stoichiometry of cysteine residues and the gold precursor is crucial. These observations indicate the importance of proper chemical behavior of all species in a wide size range extending from the atomic distances (in the AuI-S semi ring) to nanometer distances covering the larger sizes of proteins assuring the hierarchical structure of the whole self-assembled system
Flat bands as a route to high-temperature superconductivity in graphite
Superconductivity is traditionally viewed as a low-temperature phenomenon.
Within the BCS theory this is understood to result from the fact that the
pairing of electrons takes place only close to the usually two-dimensional
Fermi surface residing at a finite chemical potential. Because of this, the
critical temperature is exponentially suppressed compared to the microscopic
energy scales. On the other hand, pairing electrons around a dispersionless
(flat) energy band leads to very strong superconductivity, with a mean-field
critical temperature linearly proportional to the microscopic coupling
constant. The prize to be paid is that flat bands can generally be generated
only on surfaces and interfaces, where high-temperature superconductivity would
show up. The flat-band character and the low dimensionality also mean that
despite the high critical temperature such a superconducting state would be
subject to strong fluctuations. Here we discuss the topological and
non-topological flat bands discussed in different systems, and show that
graphite is a good candidate for showing high-temperature flat-band interface
superconductivity.Comment: Submitted as a chapter to the book on "Basic Physics of
functionalized Graphite", 21 pages, 12 figure
Input-to-state stability of infinite-dimensional control systems
We develop tools for investigation of input-to-state stability (ISS) of
infinite-dimensional control systems. We show that for certain classes of
admissible inputs the existence of an ISS-Lyapunov function implies the
input-to-state stability of a system. Then for the case of systems described by
abstract equations in Banach spaces we develop two methods of construction of
local and global ISS-Lyapunov functions. We prove a linearization principle
that allows a construction of a local ISS-Lyapunov function for a system which
linear approximation is ISS. In order to study interconnections of nonlinear
infinite-dimensional systems, we generalize the small-gain theorem to the case
of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov
function for an entire interconnection, if ISS-Lyapunov functions for
subsystems are known and the small-gain condition is satisfied. We illustrate
the theory on examples of linear and semilinear reaction-diffusion equations.Comment: 33 page
Pleiotropic functions of the tumor- and metastasis-suppressing Matrix Metalloproteinase-8 in mammary cancer in MMTV-PyMT transgenic mice
Matrix metalloproteinase-8 (MMP-8; neutrophil collagenase) is an important regulator of innate immunity which has onco-suppressive actions in numerous tumor types
New zebrafish models of neurodegeneration
In modern biomedicine, the increasing need to develop experimental models to further our understanding of disease conditions and delineate innovative treatments has found in the zebrafish (Danio rerio) an experimental model, and indeed a valuable asset, to close the gap between in vitro and in vivo assays. Translation of ideas at a faster pace is vital in the field of neurodegeneration, with the attempt to slow or prevent the dramatic impact on the society's welfare being an essential priority. Our research group has pioneered the use of zebrafish to contribute to the quest for faster and improved understanding and treatment of neurodegeneration in concert with, and inspired by, many others who have primed the study of the zebrafish to understand and search for a cure for disorders of the nervous system. Aware of the many advantages this vertebrate model holds, here, we present an update on the recent zebrafish models available to study neurodegeneration with the goal of stimulating further interest and increasing the number of diseases and applications for which they can be exploited. We shall do so by citing and commenting on recent breakthroughs made possible via zebrafish, highlighting their benefits for the testing of therapeutics and dissecting of disease mechanisms
The relationship between the systemic inflammatory response, tumour proliferative activity, T-lymphocytic and macrophage infiltration, microvessel density and survival in patients with primary operable breast cancer
The significance of the inter-relationship between tumour and host local/systemic inflammatory responses in primary operable invasive breast cancer is limited. The inter-relationship between the systemic inflammatory response (pre-operative white cell count, C-reactive protein and albumin concentrations), standard clinicopathological factors, tumour T-lymphocytic (CD4+ and CD8+) and macrophage (CD68+) infiltration, proliferative (Ki-67) index and microvessel density (CD34+) was examined using immunohistochemistry and slide-counting techniques, and their prognostic values were examined in 168 patients with potentially curative resection of early-stage invasive breast cancer. Increased tumour grade and proliferative activity were associated with greater tumour T-lymphocyte (P<0.05) and macrophage (P<0.05) infiltration and microvessel density (P<0.01). The median follow-up of survivors was 72 months. During this period, 31 patients died; 18 died of their cancer. On univariate analysis, increased lymph-node involvement (P<0.01), negative hormonal receptor (P<0.10), lower albumin concentrations (P<0.01), increased tumour proliferation (P<0.05), increased tumour microvessel density (P<0.05), the extent of locoregional control (P<0.0001) and limited systemic treatment (Pless than or equal to0.01) were associated with cancer-specific survival. On multivariate analysis of these significant covariates, albumin (HR 4.77, 95% CI 1.35–16.85, P=0.015), locoregional treatment (HR 3.64, 95% CI 1.04–12.72, P=0.043) and systemic treatment (HR 2.29, 95% CI 1.23–4.27, P=0.009) were significant independent predictors of cancer-specific survival. Among tumour-based inflammatory factors, only tumour microvessel density (P<0.05) was independently associated with poorer cancer-specific survival. The host inflammatory responses are closely associated with poor tumour differentiation, proliferation and malignant disease progression in breast cancer
Hedgehog Spin-texture and Berry's Phase tuning in a Magnetic Topological Insulator
Understanding and control of spin degrees of freedom on the surfaces of
topological materials are key to future applications as well as for realizing
novel physics such as the axion electrodynamics associated with time-reversal
(TR) symmetry breaking on the surface. We experimentally demonstrate
magnetically induced spin reorientation phenomena simultaneous with a
Dirac-metal to gapped-insulator transition on the surfaces of manganese-doped
Bi2Se3 thin films. The resulting electronic groundstate exhibits unique
hedgehog-like spin textures at low energies, which directly demonstrate the
mechanics of TR symmetry breaking on the surface. We further show that an
insulating gap induced by quantum tunnelling between surfaces exhibits spin
texture modulation at low energies but respects TR invariance. These spin
phenomena and the control of their Fermi surface geometrical phase first
demonstrated in our experiments pave the way for the future realization of many
predicted exotic magnetic phenomena of topological origin.Comment: 38 pages, 18 Figures, Includes new text, additional datasets and
interpretation beyond arXiv:1206.2090, for the final published version see
Nature Physics (2012
Robotic Wireless Sensor Networks
In this chapter, we present a literature survey of an emerging, cutting-edge,
and multi-disciplinary field of research at the intersection of Robotics and
Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor
Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system
that aims to achieve certain sensing goals while meeting and maintaining
certain communication performance requirements, through cooperative control,
learning and adaptation. While both of the component areas, i.e., Robotics and
WSN, are very well-known and well-explored, there exist a whole set of new
opportunities and research directions at the intersection of these two fields
which are relatively or even completely unexplored. One such example would be
the use of a set of robotic routers to set up a temporary communication path
between a sender and a receiver that uses the controlled mobility to the
advantage of packet routing. We find that there exist only a limited number of
articles to be directly categorized as RWSN related works whereas there exist a
range of articles in the robotics and the WSN literature that are also relevant
to this new field of research. To connect the dots, we first identify the core
problems and research trends related to RWSN such as connectivity,
localization, routing, and robust flow of information. Next, we classify the
existing research on RWSN as well as the relevant state-of-the-arts from
robotics and WSN community according to the problems and trends identified in
the first step. Lastly, we analyze what is missing in the existing literature,
and identify topics that require more research attention in the future
Collapse of superconductivity in a hybrid tin-graphene Josephson junction array
When a Josephson junction array is built with hybrid
superconductor/metal/superconductor junctions, a quantum phase transition from
a superconducting to a two-dimensional (2D) metallic ground state is predicted
to happen upon increasing the junction normal state resistance. Owing to its
surface-exposed 2D electron gas and its gate-tunable charge carrier density,
graphene coupled to superconductors is the ideal platform to study the
above-mentioned transition between ground states. Here we show that decorating
graphene with a sparse and regular array of superconducting nanodisks enables
to continuously gate-tune the quantum superconductor-to-metal transition of the
Josephson junction array into a zero-temperature metallic state. The
suppression of proximity-induced superconductivity is a direct consequence of
the emergence of quantum fluctuations of the superconducting phase of the
disks. Under perpendicular magnetic field, the competition between quantum
fluctuations and disorder is responsible for the resilience at the lowest
temperatures of a superconducting glassy state that persists above the upper
critical field. Our results provide the entire phase diagram of the disorder
and magnetic field-tuned transition and unveil the fundamental impact of
quantum phase fluctuations in 2D superconducting systems.Comment: 25 pages, 6 figure
The specificity and patterns of staining in human cells and tissues of p16INK4a antibodies demonstrate variant antigen binding
The validity of the identification and classification of human cancer using antibodies to detect biomarker proteins depends upon antibody specificity. Antibodies that bind to the tumour-suppressor protein p16INK4a are widely used for cancer diagnosis and research. In this study we examined the specificity of four commercially available anti-p16INK4a antibodies in four immunological applications. The antibodies H-156 and JC8 detected the same 16 kDa protein in western blot and immunoprecipitation tests, whereas the antibody F-12 did not detect any protein in western blot analysis or capture a protein that could be recognised by the H-156 antibody. In immunocytochemistry tests, the antibodies JC8 and H-156 detected a predominately cytoplasmic localised antigen, whose signal was depleted in p16INK4a siRNA experiments. F-12, in contrast, detected a predominately nuclear located antigen and there was no noticeable reduction in this signal after siRNA knockdown. Furthermore in immunohistochemistry tests, F-12 generated a different pattern of staining compared to the JC8 and E6H4 antibodies. These results demonstrate that three out of four commercially available p16INK4a antibodies are specific to, and indicate a mainly cytoplasmic localisation for, the p16INK4a protein. The F-12 antibody, which has been widely used in previous studies, gave different results to the other antibodies and did not demonstrate specificity to human p16INK4a. This work emphasizes the importance of the validation of commercial antibodies, aside to the previously reported use, for the full verification of immunoreaction specificity
- …
