17 research outputs found
Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution
Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work
Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery
The end-Permian mass extinction, ~252 million years ago, is notable for a complex recovery period of ~5 Myr. Widespread euxinic (anoxic and sulfidic) oceanic conditions have been proposed as both extinction mechanism and explanation for the protracted recovery period, yet the vertical distribution of anoxia in the water column and its temporal dynamics through this time period are poorly constrained. Here we utilize Fe–S–C systematics integrated with palaeontological observations to reconstruct a complete ocean redox history for the Late Permian to Early Triassic, using multiple sections across a shelf-to-basin transect on the Arabian Margin (Neo-Tethyan Ocean). In contrast to elsewhere, we show that anoxic non-sulfidic (ferruginous), rather than euxinic, conditions were prevalent in the Neo-Tethys. The Arabian Margin record demonstrates the repeated expansion of ferruginous conditions with the distal slope being the focus of anoxia at these times, as well as short-lived episodes of oxia that supported diverse biota
Global distribution of the Th-230 flux to ocean sediments constrained by GCM modelling
We have introduced a simple particle field into an existing and well-documented ocean general circulation model. This enables us to investigate the advection and scavenging of particle-reactive species within the water column. As a first use of this model, we have assessed the advection and flux to sediment of 230Th, a nuclide with a well understood marine chemistry that exhibits extreme particle reactivity. The flux to sediment of this nuclide is of interest as it is widely assumed to be related only to water depth, and therefore to act as a constant-flux indicator for marine sediments. By assuming an average settling velocity for marine particles of 3 m/d, in good agreement with observational constraints, the model generates a particle field close to that observed. Thorium-230 is scavenged onto this particle field reversibly according to Kd values constrained by observations and incorporating a particle-concentration effect. This scavenging gives a good fit to the ≃ 900 literature water-column measurements of 230Th suggesting that the model is advecting and removing 230Th realistically. An exception to this is the Weddell Sea, where the model has too little ice cover and too much lateral mixing, which prevents it from duplicating the observed high 230Th values. The model confirms that significant advection of 230Th occurs and duplicates the low 230Th values seen deep in the North Atlantic due to the advection of low-230Th surface waters to depth. Model-derived maps of the 230Th flux to the sediment indicate that ≃ 70% of the ocean floor receives a 230Th flux within 30% of that expected from production. In extremely non-productive regions, the flux can fall to as low as 0.4 times that expected for in situ scavenging, while highly productive regions have fluxes up to 1.6 times that expected. An additional model run using glacial circulation fields suggests that glacial 230Th fluxes are similar to those in the Holocene except in regions close to sea ice. This is particularly true of the North Atlantic, where appreciably more scavenging occurs in the glacial run due to advection of 230Th from the ice-covered Arctic, and because of reduced North Atlantic Deep Water (NADW) formation. These ice-related effects mean that the area of ocean floor with 230Th fluxes within 30% of production falls to ≃ 60% for the glacial. The Holocene and Glacial flux maps allow an assessment of the accuracy of 230Th-derived sedimentation rates for existing and future studies
Perspectives of parameter and state estimation in paleoclimatology in Climate Change, Inferences from Paleoclimate and Regional Aspects, Proceedings of the Milutin Milankovitch 130th Anniversary Symposium
Past climates provide a means for evaluating the response of the climate system to large perturbations. Our ultimate goal is to constrain climate models rigorously by paleoclimate data. For illustration, we used a conceptual climate model (a classical energy balance model) and applied the so-called “adjoint method” to minimize the misfit between our model and sea-surface temperature data for the Last Glacial Maximum (LGM, between 19,000-23,000 years before present). The “adjoint model” (derivative code) was generated by an “adjoint compiler”. We optimized parameters controlling the thermal diffusion and the sensitivity of the outgoing longwave radiation to changes in the zonal-mean surface temperature and the atmospheric CO2 concentration. As a result, we estimated that an equilibrium climate sensitivity between 2.2 degC and 2.5 degC was consistent with the reconstructed glacial cooling, and we were able to infer structural deficits of the simple model where the fit to current observations and paleo data was not successful
Expanded oxygen minimum zones during the late Paleocene-early Eocene: hints from multi-proxy comparison and ocean modelling
Anthropogenic warming could well drive depletion of oceanic oxygen in the future. Important insight into the relationship between de-oxygenation and warming can be gleaned from the geological record, but evidence is limited because few ocean oxygenation records are available for past greenhouse climate conditions. We use I/Ca in benthic foraminifera to reconstruct late Paleocene through early Eocene bottom and pore-water redox conditions in the South Atlantic and Southern Indian Oceans, and compare our results with those derived from Mn speciation and the Ce anomaly in fish teeth. We conclude that waters with lower oxygen concentrations were widespread at intermediate depths (1.5-2 km), whereas bottom waters were more oxygenated at the deepest site, in the Southeast Atlantic Ocean (>3 km). Epifaunal benthic foraminiferal I/Ca values were higher in the late Paleocene, especially at low oxygen sites, than at well-oxygenated modern sites, indicate higher seawater total iodine concentrations in the late Paleocene than today. The proxy-based bottom water oxygenation pattern agrees with the site-to-site O2 gradient as simulated in a comprehensive climate model (CCSM3), but the simulated absolute dissolved O2 values are low (<~35 µmol/kg), while higher O2 values (~60-100 µmol/kg) were obtained in an Earth system model (cGENIE). Multi-proxy data together with improvements in boundary conditions and model parameterization are necessary if the details of past oceanographic oxygenation are to be resolved
The Atlantic Ocean at the last glacial maximum: 2. Reconstructing the current systems with a global ocean model
We use a global ocean general circulation model (OGCM) with low vertical diffusion and isopycnal mixing to simulate the circulation in the Atlantic Ocean at present-day and the Last Glacial Maximum (LGM). The OGCM includes d18O as a passive tracer. Regarding the LGM sea-surface boundary conditions, the temperature is based on the GLAMAP reconstruction, the salinity is estimated from the available d18O data, and the wind-stress is derived from the output of an atmospheric general circulation model. Our focus is on changes in the upper-ocean hydrology, the large-scale horizontal circulation and the d18O distribution. In a series of LGM experiments with a step-wise increase of the sea-surface salinity anomaly in the Weddell Sea, the ventilated thermocline was colder than today by 2 3°C in the North Atlantic Ocean and, in the experiment with the largest anomaly (1.0 beyond the global anomaly), by 4-5°C in the South Atlantic Ocean; furthermore it was generally shallower. As the meridional density gradient grew, the Antarctic Circumpolar Current strengthened and its northern boundary approached Cape of Good Hope. At the same time the southward penetration of the Agulhas Current was reduced, and less thermocline-to-intermediate water slipped from the Indian Ocean along the southern rim of the African continent into the South Atlantic Ocean; the 'Agulhas leakage' was diminished by up to 60% with respect to its modern value, such that the cold water route became the dominant path for North Atlantic Deep Water (NADW) renewal. It can be speculated that the simulated intensification of the Benguela Current and the enhancement of NADW upwelling in the Southern Ocean might reduce the import of silicate into the Benguela System, which could possibly resolve the 'Walvis Opal Paradox'. Although d18Ow was restored to the same surface values and could only reflect changes in advection and diffusion, the resulting d18Oc distribution came close to reconstructions based on fossil shells of benthic foraminifera
Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980
Observations of atmospheric CO2 concentrations at Mauna Loa, Hawaii, and at the South Pole over the past four decades show an approximate proportionality between the rising atmospheric concentrations and industrial CO2 emissions. This proportionality, which is most apparent during the first 20 years of the records, was disturbed in the 1980s by a disproportionately high rate of rise of atmospheric CO2, followed after 1988 by a pronounced slowing down of the growth rate. To probe the causes of these changes, we examine here the changes expected from the variations in the rates of industrial CO2 emissions over this time, and also from influences of climate such as El Niño events. We use the 13C/12C ratio of atmospheric CO2 to distinguish the effects of interannual variations in biospheric and oceanic sources and sinks of carbon. We propose that the recent disproportionate rise and fall in CO2 growth rate were caused mainly by interannual variations in global air temperature (which altered both the terrestrial biospheric and the oceanic carbon sinks), and possibly also by precipitation. We suggest that the anomalous climate-induced rise in CO2 was partially masked by a slowing down in the growth rate of fossil-fuel combustion, and that the latter then exaggerated the subsequent climate-induced fall.
Two massive, rapid releases of carbon during the onset of the Palaeocene–Eocene thermal maximum
Earth system feedback statistically extracted from the Indian Ocean deep-sea sediments recording Eocene hyperthermals
Abstract Multiple transient global warming events occurred during the early Palaeogene. Although these events, called hyperthermals, have been reported from around the globe, geologic records for the Indian Ocean are limited. In addition, the recovery processes from relatively modest hyperthermals are less constrained than those from the severest and well-studied hothouse called the Palaeocene–Eocene Thermal Maximum. In this study, we constructed a new and high-resolution geochemical dataset of deep-sea sediments clearly recording multiple Eocene hyperthermals in the Indian Ocean. We then statistically analysed the high-dimensional data matrix and extracted independent components corresponding to the biogeochemical responses to the hyperthermals. The productivity feedback commonly controls and efficiently sequesters the excess carbon in the recovery phases of the hyperthermals via an enhanced biological pump, regardless of the magnitude of the events. Meanwhile, this negative feedback is independent of nannoplankton assemblage changes generally recognised in relatively large environmental perturbations
